结肠靶向给药系统的进展:治疗结肠疾病的创新战略与未来展望》。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-10-07 DOI:10.2174/0113892010323922240924053921
Jyoti Singh, Ashutosh Solanki, Gaurav Singh Sikarwar, Niraj Kumar Singh
{"title":"结肠靶向给药系统的进展:治疗结肠疾病的创新战略与未来展望》。","authors":"Jyoti Singh, Ashutosh Solanki, Gaurav Singh Sikarwar, Niraj Kumar Singh","doi":"10.2174/0113892010323922240924053921","DOIUrl":null,"url":null,"abstract":"<p><p>Colon-specific targeting delivery systems have drawn a great deal of attention because they represent potential vehicles for treating colonic disorders like diverticulitis, colitis, salmonellosis, Crohn's disease, etc. with less systemic adverse effects as well as for the better oral delivery of many therapeutics that are prone to enzymatic and acidic deterioration in the upper GI tract. Smart polymeric delivery systems in particular have been investigated as \"intelligent\" delivery systems capable of releasing entrapped pharmaceuticals at the proper time & site of action in response to certain physiological stimuli. The creation of novel polymers & crosslinkers with improved biodegradability and biocompatibility would expand and enhance applications now in use. The development of polymeric systems could result in more precise and programmable drug delivery/therapies. In addition, newer advancements have led to the development of numerous ground-breaking techniques for directing a medication molecule to the colon. This review highlighted formulation techniques pH-dependent, time-dependent, enzyme sensitive, magnetically dependent, ligand-receptor mediated, and microflora-activated systems. Moreover, several methods have been put forth that make use of the innovative idea of such delivery systems, and mechanisms in which the release of drugs is regulated by pH and time as well as pH and the colon's bacteria.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Colon-Targeted Drug Delivery Systems: Innovative Strategies for Treating Colonic Disorders and Prospects for the Future.\",\"authors\":\"Jyoti Singh, Ashutosh Solanki, Gaurav Singh Sikarwar, Niraj Kumar Singh\",\"doi\":\"10.2174/0113892010323922240924053921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colon-specific targeting delivery systems have drawn a great deal of attention because they represent potential vehicles for treating colonic disorders like diverticulitis, colitis, salmonellosis, Crohn's disease, etc. with less systemic adverse effects as well as for the better oral delivery of many therapeutics that are prone to enzymatic and acidic deterioration in the upper GI tract. Smart polymeric delivery systems in particular have been investigated as \\\"intelligent\\\" delivery systems capable of releasing entrapped pharmaceuticals at the proper time & site of action in response to certain physiological stimuli. The creation of novel polymers & crosslinkers with improved biodegradability and biocompatibility would expand and enhance applications now in use. The development of polymeric systems could result in more precise and programmable drug delivery/therapies. In addition, newer advancements have led to the development of numerous ground-breaking techniques for directing a medication molecule to the colon. This review highlighted formulation techniques pH-dependent, time-dependent, enzyme sensitive, magnetically dependent, ligand-receptor mediated, and microflora-activated systems. Moreover, several methods have been put forth that make use of the innovative idea of such delivery systems, and mechanisms in which the release of drugs is regulated by pH and time as well as pH and the colon's bacteria.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010323922240924053921\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010323922240924053921","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结肠特异性靶向给药系统备受关注,因为它们是治疗结肠疾病(如憩室炎、结肠炎、沙门氏菌病、克罗恩病等)的潜在工具,对全身的不良影响较小,还能更好地口服许多在上消化道容易发生酶和酸性变质的治疗药物。智能聚合物给药系统作为一种 "智能 "给药系统,能够根据特定的生理刺激,在适当的时间和作用部位释放所夹带的药物,这一点尤其值得研究。新型聚合物和交联剂具有更好的生物降解性和生物相容性,可扩大和提高目前的应用范围。聚合物系统的开发可带来更精确、更可编程的给药/疗法。此外,新技术的发展还带来了许多将药物分子导向结肠的突破性技术。本综述重点介绍了 pH 依赖性、时间依赖性、酶敏感性、磁依赖性、配体受体介导和微生物菌群激活系统等配方技术。此外,还提出了几种利用此类给药系统创新理念的方法,以及药物释放受 pH 值、时间、pH 值和结肠细菌调节的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Colon-Targeted Drug Delivery Systems: Innovative Strategies for Treating Colonic Disorders and Prospects for the Future.

Colon-specific targeting delivery systems have drawn a great deal of attention because they represent potential vehicles for treating colonic disorders like diverticulitis, colitis, salmonellosis, Crohn's disease, etc. with less systemic adverse effects as well as for the better oral delivery of many therapeutics that are prone to enzymatic and acidic deterioration in the upper GI tract. Smart polymeric delivery systems in particular have been investigated as "intelligent" delivery systems capable of releasing entrapped pharmaceuticals at the proper time & site of action in response to certain physiological stimuli. The creation of novel polymers & crosslinkers with improved biodegradability and biocompatibility would expand and enhance applications now in use. The development of polymeric systems could result in more precise and programmable drug delivery/therapies. In addition, newer advancements have led to the development of numerous ground-breaking techniques for directing a medication molecule to the colon. This review highlighted formulation techniques pH-dependent, time-dependent, enzyme sensitive, magnetically dependent, ligand-receptor mediated, and microflora-activated systems. Moreover, several methods have been put forth that make use of the innovative idea of such delivery systems, and mechanisms in which the release of drugs is regulated by pH and time as well as pH and the colon's bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
A Double-blind Randomized Split-mouth Clinical Trial on a Hemostatic Dental Material Containing Aloe Vera Nanoparticles: The Effects on Pain and Occurrence of Dry Socket after Tooth Extraction. The Role of Immunosenescence and Inflammaging in the Susceptibility of Older Adults to SARS-CoV-2 Infection. Application of Probiotics and Postbiotics in Neurological Disorders. In silico Study of Antiviral Phytochemicals for the Potential Drug Development Against Wild-type and Omicron Variants of SARS-CoV-2. Linking Processed and Red Meat Consumption to Specific Lung Cancer Subtypes: A Mendelian Randomization Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1