Kave Mohammad-Jafari, Seyed Morteza Naghib, M R Mozafari
{"title":"用于减少肺癌化疗副作用的纳米脂质体封装紫杉醇:最新进展与未来展望》。","authors":"Kave Mohammad-Jafari, Seyed Morteza Naghib, M R Mozafari","doi":"10.2174/0109298673308951240921121345","DOIUrl":null,"url":null,"abstract":"<p><p>Paclitaxel is one notable chemotherapy drug that is used to treat a number of cancers, including lung cancer. Nevertheless, it has drawbacks such as toxicity, low solubility in water, and the emergence of multidrug resistance (MDR). This article reviews the use of liposomal formulations to improve paclitaxel administration and efficacy for lung cancer therapy. Paclitaxel's pharmacological characteristics can be improved by liposomes through increased solubility, extended circulation, passive tumor targeting through leaky vasculature, and decreased side effects. Recent developments in paclitaxel liposomal formulations, including as cationic liposomes, conventional liposomes, targeted liposomes with particular ligands, and liposome-loaded microorganisms, are outlined in this article. In comparison to free paclitaxel, these nanoformulations exhibit enhanced cytotoxicity, cellular uptake, apoptosis, tumor growth suppression, and anticancer effects in lung cancer cell lines and animal models. One efficient way to get around the drawbacks of paclitaxel is to alter its size, makeup, and surface characteristics. This will let the medication accumulate and penetrate tumors more easily, avoid multidrug resistance, and cause less systemic toxicity. The article explores clinical studies showcasing the safety and therapeutic efficacy of liposomal paclitaxel for individuals afflicted with lung cancer. In its entirety, the document provides an in-depth examination of the potential enhancement in paclitaxel's dispersion and anti-tumor impacts through the utilization of liposomal technology when addressing diverse manifestations of lung cancer.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liposomal Nanoformulation-encapsulated Paclitaxel for Reducing Chemotherapy Side Effects in Lung Cancer Treatments: Recent Advances and Future Outlooks.\",\"authors\":\"Kave Mohammad-Jafari, Seyed Morteza Naghib, M R Mozafari\",\"doi\":\"10.2174/0109298673308951240921121345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paclitaxel is one notable chemotherapy drug that is used to treat a number of cancers, including lung cancer. Nevertheless, it has drawbacks such as toxicity, low solubility in water, and the emergence of multidrug resistance (MDR). This article reviews the use of liposomal formulations to improve paclitaxel administration and efficacy for lung cancer therapy. Paclitaxel's pharmacological characteristics can be improved by liposomes through increased solubility, extended circulation, passive tumor targeting through leaky vasculature, and decreased side effects. Recent developments in paclitaxel liposomal formulations, including as cationic liposomes, conventional liposomes, targeted liposomes with particular ligands, and liposome-loaded microorganisms, are outlined in this article. In comparison to free paclitaxel, these nanoformulations exhibit enhanced cytotoxicity, cellular uptake, apoptosis, tumor growth suppression, and anticancer effects in lung cancer cell lines and animal models. One efficient way to get around the drawbacks of paclitaxel is to alter its size, makeup, and surface characteristics. This will let the medication accumulate and penetrate tumors more easily, avoid multidrug resistance, and cause less systemic toxicity. The article explores clinical studies showcasing the safety and therapeutic efficacy of liposomal paclitaxel for individuals afflicted with lung cancer. In its entirety, the document provides an in-depth examination of the potential enhancement in paclitaxel's dispersion and anti-tumor impacts through the utilization of liposomal technology when addressing diverse manifestations of lung cancer.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673308951240921121345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673308951240921121345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Liposomal Nanoformulation-encapsulated Paclitaxel for Reducing Chemotherapy Side Effects in Lung Cancer Treatments: Recent Advances and Future Outlooks.
Paclitaxel is one notable chemotherapy drug that is used to treat a number of cancers, including lung cancer. Nevertheless, it has drawbacks such as toxicity, low solubility in water, and the emergence of multidrug resistance (MDR). This article reviews the use of liposomal formulations to improve paclitaxel administration and efficacy for lung cancer therapy. Paclitaxel's pharmacological characteristics can be improved by liposomes through increased solubility, extended circulation, passive tumor targeting through leaky vasculature, and decreased side effects. Recent developments in paclitaxel liposomal formulations, including as cationic liposomes, conventional liposomes, targeted liposomes with particular ligands, and liposome-loaded microorganisms, are outlined in this article. In comparison to free paclitaxel, these nanoformulations exhibit enhanced cytotoxicity, cellular uptake, apoptosis, tumor growth suppression, and anticancer effects in lung cancer cell lines and animal models. One efficient way to get around the drawbacks of paclitaxel is to alter its size, makeup, and surface characteristics. This will let the medication accumulate and penetrate tumors more easily, avoid multidrug resistance, and cause less systemic toxicity. The article explores clinical studies showcasing the safety and therapeutic efficacy of liposomal paclitaxel for individuals afflicted with lung cancer. In its entirety, the document provides an in-depth examination of the potential enhancement in paclitaxel's dispersion and anti-tumor impacts through the utilization of liposomal technology when addressing diverse manifestations of lung cancer.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.