Inae Jeong, Shinjung Park, Jinbum Park, Ok-Kyung Kim
{"title":"肥胖小鼠脂肪组织衍生的细胞外囊泡抑制脾细胞介导的胰腺癌细胞死亡","authors":"Inae Jeong, Shinjung Park, Jinbum Park, Ok-Kyung Kim","doi":"10.29219/fnr.v68.10545","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression.</p><p><strong>Objectives: </strong>We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells.</p><p><strong>Design: </strong>We isolated EVs from the adipose tissue of both C57BL6/J mice and <i>Ob/Ob</i> mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium.</p><p><strong>Results: </strong>Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of <i>Ob/Ob</i> mice, compared to those from C57BL6/J mice. Additionally, EVs from <i>Ob/Ob</i> mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue.</p><p><strong>Conclusion: </strong>Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.</p>","PeriodicalId":12119,"journal":{"name":"Food & Nutrition Research","volume":"68 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457911/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death.\",\"authors\":\"Inae Jeong, Shinjung Park, Jinbum Park, Ok-Kyung Kim\",\"doi\":\"10.29219/fnr.v68.10545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression.</p><p><strong>Objectives: </strong>We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells.</p><p><strong>Design: </strong>We isolated EVs from the adipose tissue of both C57BL6/J mice and <i>Ob/Ob</i> mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium.</p><p><strong>Results: </strong>Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of <i>Ob/Ob</i> mice, compared to those from C57BL6/J mice. Additionally, EVs from <i>Ob/Ob</i> mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue.</p><p><strong>Conclusion: </strong>Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.</p>\",\"PeriodicalId\":12119,\"journal\":{\"name\":\"Food & Nutrition Research\",\"volume\":\"68 \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Nutrition Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.29219/fnr.v68.10545\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Nutrition Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.29219/fnr.v68.10545","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death.
Background: Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression.
Objectives: We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells.
Design: We isolated EVs from the adipose tissue of both C57BL6/J mice and Ob/Ob mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium.
Results: Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of Ob/Ob mice, compared to those from C57BL6/J mice. Additionally, EVs from Ob/Ob mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue.
Conclusion: Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.
期刊介绍:
Food & Nutrition Research is a peer-reviewed journal that presents the latest scientific research in various fields focusing on human nutrition. The journal publishes both quantitative and qualitative research papers.
Through an Open Access publishing model, Food & Nutrition Research opens an important forum for researchers from academic and private arenas to exchange the latest results from research on human nutrition in a broad sense, both original papers and reviews, including:
* Associations and effects of foods and nutrients on health
* Dietary patterns and health
* Molecular nutrition
* Health claims on foods
* Nutrition and cognitive functions
* Nutritional effects of food composition and processing
* Nutrition in developing countries
* Animal and in vitro models with clear relevance for human nutrition
* Nutrition and the Environment
* Food and Nutrition Education
* Nutrition and Economics
Research papers on food chemistry (focus on chemical composition and analysis of foods) are generally not considered eligible, unless the results have a clear impact on human nutrition.
The journal focuses on the different aspects of nutrition for people involved in nutrition research such as Dentists, Dieticians, Medical doctors, Nutritionists, Teachers, Journalists and Manufacturers in the food and pharmaceutical industries.