利用 1066 个个体对大口鲈鱼(Micropterus salmoides)的生长特征进行全基因组关联研究。

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in Molecular Biosciences Pub Date : 2024-09-25 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1443522
Wei Han, Ming Qi, Kun Ye, Qiwei He, Dinaer Yekefenhazi, Dongdong Xu, Fang Han, Wanbo Li
{"title":"利用 1066 个个体对大口鲈鱼(Micropterus salmoides)的生长特征进行全基因组关联研究。","authors":"Wei Han, Ming Qi, Kun Ye, Qiwei He, Dinaer Yekefenhazi, Dongdong Xu, Fang Han, Wanbo Li","doi":"10.3389/fmolb.2024.1443522","DOIUrl":null,"url":null,"abstract":"<p><p>The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-<i>igf1</i>, <i>myf5</i>, and <i>myf6</i>-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association study for growth traits with 1066 individuals in largemouth bass (<i>Micropterus salmoides</i>).\",\"authors\":\"Wei Han, Ming Qi, Kun Ye, Qiwei He, Dinaer Yekefenhazi, Dongdong Xu, Fang Han, Wanbo Li\",\"doi\":\"10.3389/fmolb.2024.1443522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-<i>igf1</i>, <i>myf5</i>, and <i>myf6</i>-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2024.1443522\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1443522","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大口鲈鱼是北美洲的原生鱼种,20 世纪 80 年代首次引入中国大陆。近年来,由于其肉质好、适应性广,在中国被广泛养殖。在这项研究中,我们收集了两个种群中 1066 个大嘴鲈个体的生长性状数据。我们使用 Illumina 测序仪为这些鱼类生成了平均约 7 倍的测序覆盖率。我们从样本中鉴定出 2,695,687 个 SNPs,并在筛选后保留了 1,809,116 个 SNPs 用于进一步分析。为了估算全基因组有效 SNP 的数量,我们使用 PLINK 软件进行了 LD 剪枝,结果发现了 77,935 个 SNP。我们的 GWAS 发现了 15 个与六个生长性状相关的 SNPs。我们共发现了 24 个与生长相关的基因,其中三个基因--igf1、myf5 和 myf6--与骨骼肌的发育和生长直接相关,位于 23 号染色体上的领先 SNP 附近。其他候选基因涉及组织和器官的发育或其他生理过程。这些发现提供了一组有价值的 SNP 和基因,可用于旨在提高大口鲈鱼生长的遗传育种计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide association study for growth traits with 1066 individuals in largemouth bass (Micropterus salmoides).

The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-igf1, myf5, and myf6-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
期刊最新文献
Editorial: Molecular mechanisms of thrombosis. Insights into structure and activity of a UDP-GlcNAc 2-epimerase involved in secondary cell wall polymer biosynthesis in Paenibacillus alvei. Genome-wide association study for growth traits with 1066 individuals in largemouth bass (Micropterus salmoides). Sustainable synthesis of bakuchiol-mediated gold nanoparticles for drug delivery against bacterial strains and tumor microenvironments, and its in silico target proteins identification. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1