Ida Rangus, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Chris Rorden, Nicholas Riccardi, Sarah Wilson, Natalie Busby, Janina Wilmskoetter, Samaneh Nemati, Lumi Bakos, Julius Fridriksson, Leonardo Bonilha
{"title":"健康老龄化背景下大脑结构变化对认知的影响:通过图形脑关联工具(gBAT)探索中介效应","authors":"Ida Rangus, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Chris Rorden, Nicholas Riccardi, Sarah Wilson, Natalie Busby, Janina Wilmskoetter, Samaneh Nemati, Lumi Bakos, Julius Fridriksson, Leonardo Bonilha","doi":"10.1002/hbm.70038","DOIUrl":null,"url":null,"abstract":"<p>The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20–79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462644/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Influence of Structural Brain Changes on Cognition in the Context of Healthy Aging: Exploring Mediation Effects Through gBAT—The Graphical Brain Association Tool\",\"authors\":\"Ida Rangus, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Chris Rorden, Nicholas Riccardi, Sarah Wilson, Natalie Busby, Janina Wilmskoetter, Samaneh Nemati, Lumi Bakos, Julius Fridriksson, Leonardo Bonilha\",\"doi\":\"10.1002/hbm.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20–79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70038\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
The Influence of Structural Brain Changes on Cognition in the Context of Healthy Aging: Exploring Mediation Effects Through gBAT—The Graphical Brain Association Tool
The contribution of age-related structural brain changes to the well-established link between aging and cognitive decline is not fully defined. While both age-related regional brain atrophy and cognitive decline have been extensively studied, the specific mediating role of age-related regional brain atrophy on cognitive functions is unclear. This study introduces an open-source software tool with a graphical user interface that streamlines advanced whole-brain mediation analyses, enabling researchers to systematically explore how the brain acts as a mediator in relationships between various behavioral and health outcomes. The tool is showcased by investigating regional brain volume as a mediator to determine the contribution of age-related brain volume loss toward cognition in healthy aging. We analyzed regional brain volumes and cognitive testing data (Montreal Cognitive Assessment [MoCA]) from a cohort of 131 neurologically healthy adult participants (mean age 50 ± 20.8 years, range 20–79, 73% females) drawn from the Aging Brain Cohort Study at the University of South Carolina. Using our open-source tool developed for evaluating brain-behavior associations across the brain and optimized for exploring mediation effects, we conducted a series of mediation analyses using participant age as the predictor variable, total MoCA and MoCA subtest scores as the outcome variables, and regional brain volume as potential mediators. Age-related atrophy within specific anatomical networks was found to mediate the relationship between age and cognition across multiple cognitive domains. Specifically, atrophy in bilateral frontal, parietal, and occipital areas, along with widespread subcortical regions mediated the effect of age on total MoCA scores. Various MoCA subscores were influenced by age through atrophy in distinct brain regions. These involved prefrontal regions, sensorimotor cortex, and parieto-occipital areas for executive function subscores, prefrontal and temporo-occipital regions, along with the caudate nucleus for attention and concentration subscores, frontal and parieto-occipital areas, alongside connecting subcortical areas such as the optic tract for visuospatial subscores and frontoparietal areas for language subscores. Brain-based mediation analysis offers a causal framework for evaluating the mediating role of brain structure on the relationship between age and cognition and provides a more nuanced understanding of cognitive aging than previously possible. By validating the applicability and effectiveness of this approach and making it openly available to the scientific community, we facilitate the exploration of causal mechanisms between variables mediated by the brain.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.