{"title":"具有死区输入的随机非下三角非线性系统的神经自适应输出反馈跟踪控制","authors":"Zhiguang Feng, Rui-Bing Li, Wei Zhang, Jianbin Qiu, Zhengyi Jiang","doi":"10.1109/TCYB.2024.3457769","DOIUrl":null,"url":null,"abstract":"<p><p>For stochastic nonlower triangular nonlinear systems subject to dead-zone input, a neuroadaptive tracking control frame is constructed by applying the dynamic surface technique with a state observer in this work. Its primary contribution lies in extending the stability criteria to encompass stochastic nonlinear systems characterized by nonlower triangular structures and unmeasured states. The control strategy is delineated as follows. First, the state observer is designed to address the issue of unmeasured states, thereby facilitating the generation of an error dynamics system for subsequent analysis. Second, within the backstepping design framework, a neural network-based tracking controller is devised using dynamic surface control technique and variable separation approaches, ensuring system performance despite the presence of unmeasured states. Finally, stability analysis is conducted to guarantee that all the system signals remain bounded. Simulation examples are presented to illustrate the validity and practicality of the framework.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroadaptive Output-Feedback Tracking Control for Stochastic Nonlower Triangular Nonlinear Systems With Dead-Zone Input.\",\"authors\":\"Zhiguang Feng, Rui-Bing Li, Wei Zhang, Jianbin Qiu, Zhengyi Jiang\",\"doi\":\"10.1109/TCYB.2024.3457769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For stochastic nonlower triangular nonlinear systems subject to dead-zone input, a neuroadaptive tracking control frame is constructed by applying the dynamic surface technique with a state observer in this work. Its primary contribution lies in extending the stability criteria to encompass stochastic nonlinear systems characterized by nonlower triangular structures and unmeasured states. The control strategy is delineated as follows. First, the state observer is designed to address the issue of unmeasured states, thereby facilitating the generation of an error dynamics system for subsequent analysis. Second, within the backstepping design framework, a neural network-based tracking controller is devised using dynamic surface control technique and variable separation approaches, ensuring system performance despite the presence of unmeasured states. Finally, stability analysis is conducted to guarantee that all the system signals remain bounded. Simulation examples are presented to illustrate the validity and practicality of the framework.</p>\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TCYB.2024.3457769\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2024.3457769","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Neuroadaptive Output-Feedback Tracking Control for Stochastic Nonlower Triangular Nonlinear Systems With Dead-Zone Input.
For stochastic nonlower triangular nonlinear systems subject to dead-zone input, a neuroadaptive tracking control frame is constructed by applying the dynamic surface technique with a state observer in this work. Its primary contribution lies in extending the stability criteria to encompass stochastic nonlinear systems characterized by nonlower triangular structures and unmeasured states. The control strategy is delineated as follows. First, the state observer is designed to address the issue of unmeasured states, thereby facilitating the generation of an error dynamics system for subsequent analysis. Second, within the backstepping design framework, a neural network-based tracking controller is devised using dynamic surface control technique and variable separation approaches, ensuring system performance despite the presence of unmeasured states. Finally, stability analysis is conducted to guarantee that all the system signals remain bounded. Simulation examples are presented to illustrate the validity and practicality of the framework.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.