A Magerl, H Lemmel, M Appel, M Weisser, U Kretzer, M Zobel
{"title":"GaAs 200 在小角中子散射中有望实现更高分辨率。","authors":"A Magerl, H Lemmel, M Appel, M Weisser, U Kretzer, M Zobel","doi":"10.1107/S1600576724007246","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Q</i> resolution in Bonse-Hart double-crystal diffractometers is determined for a given Bragg angle by the value of the crystallographic structure factor. To date, the reflections Si 220 or Si 111 have been used exclusively in neutron scattering, which provide resolutions for triple-bounce crystals of about 2 × 10<sup>-5</sup> Å<sup>-1</sup> (FWHM). The Darwin width of the GaAs 200 reflection is about a factor of 10 smaller, offering the possibility of a <i>Q</i> resolution of 2 × 10<sup>-6</sup> Å<sup>-1</sup> provided crystals of sufficient quality are available. This article reports a feasibility study with single-bounce GaAs 200, yielding a <i>Q</i> resolution of 4.6 × 10<sup>-6</sup> Å<sup>-1</sup>, six times superior in comparison with a Si 220 setup.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 5","pages":"1282-1287"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460398/pdf/","citationCount":"0","resultStr":"{\"title\":\"The promise of GaAs 200 in small-angle neutron scattering for higher resolution.\",\"authors\":\"A Magerl, H Lemmel, M Appel, M Weisser, U Kretzer, M Zobel\",\"doi\":\"10.1107/S1600576724007246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Q</i> resolution in Bonse-Hart double-crystal diffractometers is determined for a given Bragg angle by the value of the crystallographic structure factor. To date, the reflections Si 220 or Si 111 have been used exclusively in neutron scattering, which provide resolutions for triple-bounce crystals of about 2 × 10<sup>-5</sup> Å<sup>-1</sup> (FWHM). The Darwin width of the GaAs 200 reflection is about a factor of 10 smaller, offering the possibility of a <i>Q</i> resolution of 2 × 10<sup>-6</sup> Å<sup>-1</sup> provided crystals of sufficient quality are available. This article reports a feasibility study with single-bounce GaAs 200, yielding a <i>Q</i> resolution of 4.6 × 10<sup>-6</sup> Å<sup>-1</sup>, six times superior in comparison with a Si 220 setup.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 Pt 5\",\"pages\":\"1282-1287\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576724007246\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724007246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The promise of GaAs 200 in small-angle neutron scattering for higher resolution.
The Q resolution in Bonse-Hart double-crystal diffractometers is determined for a given Bragg angle by the value of the crystallographic structure factor. To date, the reflections Si 220 or Si 111 have been used exclusively in neutron scattering, which provide resolutions for triple-bounce crystals of about 2 × 10-5 Å-1 (FWHM). The Darwin width of the GaAs 200 reflection is about a factor of 10 smaller, offering the possibility of a Q resolution of 2 × 10-6 Å-1 provided crystals of sufficient quality are available. This article reports a feasibility study with single-bounce GaAs 200, yielding a Q resolution of 4.6 × 10-6 Å-1, six times superior in comparison with a Si 220 setup.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.