Ji-Yeon Hyeon, Jun-Hwan Byun, Byeong-Hoon Kim, Sachithra Amarin Hettiarachchi, Jeonghoon Han, Young-Ung Choi, Choong-Hwan Noh, Yuki Takeuchi, Soo-Youn Choi, Jong-Eun Park, Sung-Pyo Hur
{"title":"鳗鱼视网膜和下丘脑中的时钟基因表达:对光周期和月光的反应","authors":"Ji-Yeon Hyeon, Jun-Hwan Byun, Byeong-Hoon Kim, Sachithra Amarin Hettiarachchi, Jeonghoon Han, Young-Ung Choi, Choong-Hwan Noh, Yuki Takeuchi, Soo-Youn Choi, Jong-Eun Park, Sung-Pyo Hur","doi":"10.1002/jez.2870","DOIUrl":null,"url":null,"abstract":"<p><p>Assessment of the clock genes, Period (Per) 1, Per2, Per3, and Cryptochrome (Cry) 2, Cry3, and Cry4, can help better understand eel spawning ecology. In this study, the circadian rhythm and moonlight effects of these clock genes in the eel retina and hypothalamus were analyzed. We examined clock gene expression patterns under 12 h light:12 h darkness (12L12D), constant darkness (DD), and constant light (LL) conditions; under short photoperiod (SP; 9L15D) and long photoperiod (LP; 15L9D), and during the new moon (NM) and full moon in male eels. Per2 expression increased after sunrise, Cry2, and Cry4 expression increased around sunset, and Per1, Per3, and Cry3 expression increased before sunrise. Under SP conditions, oscillations of retinal Per3 and Cry4, which did not occur under LP conditions, were generated. In addition, retinal Cry4 oscillation was generated under NM conditions. These results suggest that the retina of the eel may play an important role in regulating circadian rhythm, and migration is initiated by the synchronization of clock genes by moonlight, suggesting that photic signals are closely related to the migratory activity of the eel.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight.\",\"authors\":\"Ji-Yeon Hyeon, Jun-Hwan Byun, Byeong-Hoon Kim, Sachithra Amarin Hettiarachchi, Jeonghoon Han, Young-Ung Choi, Choong-Hwan Noh, Yuki Takeuchi, Soo-Youn Choi, Jong-Eun Park, Sung-Pyo Hur\",\"doi\":\"10.1002/jez.2870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessment of the clock genes, Period (Per) 1, Per2, Per3, and Cryptochrome (Cry) 2, Cry3, and Cry4, can help better understand eel spawning ecology. In this study, the circadian rhythm and moonlight effects of these clock genes in the eel retina and hypothalamus were analyzed. We examined clock gene expression patterns under 12 h light:12 h darkness (12L12D), constant darkness (DD), and constant light (LL) conditions; under short photoperiod (SP; 9L15D) and long photoperiod (LP; 15L9D), and during the new moon (NM) and full moon in male eels. Per2 expression increased after sunrise, Cry2, and Cry4 expression increased around sunset, and Per1, Per3, and Cry3 expression increased before sunrise. Under SP conditions, oscillations of retinal Per3 and Cry4, which did not occur under LP conditions, were generated. In addition, retinal Cry4 oscillation was generated under NM conditions. These results suggest that the retina of the eel may play an important role in regulating circadian rhythm, and migration is initiated by the synchronization of clock genes by moonlight, suggesting that photic signals are closely related to the migratory activity of the eel.</p>\",\"PeriodicalId\":15711,\"journal\":{\"name\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.2870\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.2870","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight.
Assessment of the clock genes, Period (Per) 1, Per2, Per3, and Cryptochrome (Cry) 2, Cry3, and Cry4, can help better understand eel spawning ecology. In this study, the circadian rhythm and moonlight effects of these clock genes in the eel retina and hypothalamus were analyzed. We examined clock gene expression patterns under 12 h light:12 h darkness (12L12D), constant darkness (DD), and constant light (LL) conditions; under short photoperiod (SP; 9L15D) and long photoperiod (LP; 15L9D), and during the new moon (NM) and full moon in male eels. Per2 expression increased after sunrise, Cry2, and Cry4 expression increased around sunset, and Per1, Per3, and Cry3 expression increased before sunrise. Under SP conditions, oscillations of retinal Per3 and Cry4, which did not occur under LP conditions, were generated. In addition, retinal Cry4 oscillation was generated under NM conditions. These results suggest that the retina of the eel may play an important role in regulating circadian rhythm, and migration is initiated by the synchronization of clock genes by moonlight, suggesting that photic signals are closely related to the migratory activity of the eel.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.