受体酪氨酸激酶 MET 和 ETS 转录因子之间的功能相互作用促进了前列腺癌的进展。

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Molecular Oncology Pub Date : 2024-10-07 DOI:10.1002/1878-0261.13739
Elisa Carouge, Clémence Burnichon, Martin Figeac, Shéhérazade Sebda, Nathalie Vanpouille, Audrey Vinchent, Marie-José Truong, Martine Duterque-Coquillaud, David Tulasne, Anne Chotteau-Lelièvre
{"title":"受体酪氨酸激酶 MET 和 ETS 转录因子之间的功能相互作用促进了前列腺癌的进展。","authors":"Elisa Carouge, Clémence Burnichon, Martin Figeac, Shéhérazade Sebda, Nathalie Vanpouille, Audrey Vinchent, Marie-José Truong, Martine Duterque-Coquillaud, David Tulasne, Anne Chotteau-Lelièvre","doi":"10.1002/1878-0261.13739","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression.\",\"authors\":\"Elisa Carouge, Clémence Burnichon, Martin Figeac, Shéhérazade Sebda, Nathalie Vanpouille, Audrey Vinchent, Marie-José Truong, Martine Duterque-Coquillaud, David Tulasne, Anne Chotteau-Lelièvre\",\"doi\":\"10.1002/1878-0261.13739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13739\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是男性最常见的恶性肿瘤,其预后相对较好。然而,当前列腺癌扩散到骨骼时,存活率就会急剧下降。骨转移的发生会使患者患上侵袭性前列腺癌,这是导致男性死亡的主要原因。此外,骨转移是无法治愈的,而且非常痛苦。肝细胞生长因子受体(MET)和编码 E26 转化特异性(ETS)转录因子的基因融合都与疾病的进展有关。ETS 基因融合尤其能够诱导前列腺癌细胞的迁移和侵袭特性,而 MET 受体通过其信号级联能够激活转录因子的表达。MET 信号和 ETS 基因融合与高级别前列腺癌密切相关。然而,这些因素在前列腺癌进展过程中的协同作用尚未得到研究。在这里,我们利用晚期前列腺癌细胞模型表明,ETS 易位变异体 1(ETV1)和转录调节因子 ERG(ERG)(ETS 家族成员)可促进肿瘤特性,而 MET 信号的激活可增强这些效应。通过在人源化肝细胞生长因子(HGF)小鼠模型中使用特异性MET酪氨酸激酶抑制剂,我们还证实MET活性是ETV1/ERG介导的肿瘤生长所必需的。最后,通过比较转录组分析,我们确定了可能在这些细胞过程中发挥相关作用的靶基因。因此,我们的研究结果首次在前列腺癌模型中证明了 ETS 转录因子(ETV1 和 ERG)与 MET 信号之间的功能性相互作用,这种相互作用具有更强的侵袭性,并突出了这种联合作用的分子特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression.

Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
期刊最新文献
Integrative analysis of circulating tumor cells (CTCs) and exosomes from small-cell lung cancer (SCLC) patients: a comprehensive approach. Platelet-activating factor: a potential therapeutic target to improve cancer immunotherapy. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Gut microbiota diversity is prognostic and associated with benefit from chemo-immunotherapy in metastatic triple-negative breast cancer. Integrative transcriptomic analysis identifies emetine as a promising candidate for overcoming acquired resistance to ALK inhibitors in lung cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1