Sayanti Acharyya , Sruthy Hari Kumar , Apoorva Chouksey , Nikita Soni , Nazim Nazeer , Pradyumna Kumar Mishra
{"title":"空气污染诱发神经退行性疾病中线粒体表观遗传学改变之谜。","authors":"Sayanti Acharyya , Sruthy Hari Kumar , Apoorva Chouksey , Nikita Soni , Nazim Nazeer , Pradyumna Kumar Mishra","doi":"10.1016/j.neuro.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 158-183"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases\",\"authors\":\"Sayanti Acharyya , Sruthy Hari Kumar , Apoorva Chouksey , Nikita Soni , Nazim Nazeer , Pradyumna Kumar Mishra\",\"doi\":\"10.1016/j.neuro.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.</div></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"105 \",\"pages\":\"Pages 158-183\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24001207\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24001207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
神经退行性疾病的发病率在全球范围内日益增长,影响着不同背景的人群。虽然这些病症主要与衰老和遗传易感性有关,但其严重程度在不同的受影响人群中也不尽相同。大量研究表明,空气污染是导致神经退行性疾病发病率上升的重要因素。队列研究提供了令人信服的证据,证明长期暴露于不同的空气有毒物质与认知能力下降、行为障碍、记忆损伤和整体神经元健康恶化之间存在关联。此外,分子研究还发现,空气污染物会破坏人体的保护机制,参与神经炎症途径,并导致神经元表观遗传学改变。线粒体表观基因组对科学界尤为重要,因为它有可能极大地影响我们对神经退行性疾病发病机制及其在外周循环中释放的理解。虽然蛋白质特征已被广泛研究,但将循环表观遗传特征(如甲基化 DNA 片段、miRNA 和基因组相关因子)用作诊断工具和治疗靶点的可能性还需要进一步研究。利用循环表观遗传特征有望开发新的预后策略,创建最重要的疾病诊断点设备,确定治疗靶点,并利用多组学技术和人工智能开发基于临床数据的疾病模型,最终减轻神经退行性疾病的威胁和流行。
The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.