{"title":"CES1-knockout Tet-Off-regulated CYP3A4 和 UGT1A1 表达 Caco-2 细胞的生成和应用。","authors":"Michika Murata , Kentaro Okada , Masaki Takahashi , Yukiko Ueyama-Toba , Sumito Ito , Hiroyuki Mizuguchi","doi":"10.1016/j.toxlet.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine. We previously developed Caco-2 cells whose expression of CYP3A4 can be controlled using doxycycline (Dox) (CYP3A4-Caco-2 cells) (Ichikawa et al., Sci. Rep, 2021). However, since the Tet-On system was used to regulate CYP3A4 expression in these cells, there was concern about drug-drug interactions. The second issue is that in the human small intestine, carboxylesterase 2 (CES2) is more highly expressed than carboxylesterase 1 (CES1), while in Caco-2 cells CES1 is more highly expressed. The third issue is the low level expression of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a phase II drug-metabolizing enzyme. In this study, we used genome-editing technology to establish <em>CES1</em>-knockout Caco-2 cells whose CYP3A4 and UGT1A1 expression can be regulated by the Tet-Off system. These cell lines would be useful in pharmaceutical researches, including intestinal toxicological studies, as an in vitro model for orally administered drugs.</div></div>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":"401 ","pages":"Pages 158-169"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and application of CES1-knockout Tet-Off-regulated CYP3A4 and UGT1A1-expressing Caco-2 cells\",\"authors\":\"Michika Murata , Kentaro Okada , Masaki Takahashi , Yukiko Ueyama-Toba , Sumito Ito , Hiroyuki Mizuguchi\",\"doi\":\"10.1016/j.toxlet.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine. We previously developed Caco-2 cells whose expression of CYP3A4 can be controlled using doxycycline (Dox) (CYP3A4-Caco-2 cells) (Ichikawa et al., Sci. Rep, 2021). However, since the Tet-On system was used to regulate CYP3A4 expression in these cells, there was concern about drug-drug interactions. The second issue is that in the human small intestine, carboxylesterase 2 (CES2) is more highly expressed than carboxylesterase 1 (CES1), while in Caco-2 cells CES1 is more highly expressed. The third issue is the low level expression of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a phase II drug-metabolizing enzyme. In this study, we used genome-editing technology to establish <em>CES1</em>-knockout Caco-2 cells whose CYP3A4 and UGT1A1 expression can be regulated by the Tet-Off system. These cell lines would be useful in pharmaceutical researches, including intestinal toxicological studies, as an in vitro model for orally administered drugs.</div></div>\",\"PeriodicalId\":23206,\"journal\":{\"name\":\"Toxicology letters\",\"volume\":\"401 \",\"pages\":\"Pages 158-169\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378427424020356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378427424020356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Generation and application of CES1-knockout Tet-Off-regulated CYP3A4 and UGT1A1-expressing Caco-2 cells
Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine. We previously developed Caco-2 cells whose expression of CYP3A4 can be controlled using doxycycline (Dox) (CYP3A4-Caco-2 cells) (Ichikawa et al., Sci. Rep, 2021). However, since the Tet-On system was used to regulate CYP3A4 expression in these cells, there was concern about drug-drug interactions. The second issue is that in the human small intestine, carboxylesterase 2 (CES2) is more highly expressed than carboxylesterase 1 (CES1), while in Caco-2 cells CES1 is more highly expressed. The third issue is the low level expression of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a phase II drug-metabolizing enzyme. In this study, we used genome-editing technology to establish CES1-knockout Caco-2 cells whose CYP3A4 and UGT1A1 expression can be regulated by the Tet-Off system. These cell lines would be useful in pharmaceutical researches, including intestinal toxicological studies, as an in vitro model for orally administered drugs.