Wen Huo , Yiheng Huang , Baoqinq Tian , Xiaozheng Chen , Jie Lu , Xinyi Huang , Meng Wu , Jinming Yu , Dawei Chen , Ruozheng Wang
{"title":"揭示 RECQL4 通过 PI3K/AKT 通路介导宫颈癌进展的机制。","authors":"Wen Huo , Yiheng Huang , Baoqinq Tian , Xiaozheng Chen , Jie Lu , Xinyi Huang , Meng Wu , Jinming Yu , Dawei Chen , Ruozheng Wang","doi":"10.1016/j.tranon.2024.102146","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>RECQL4 is a member of the DNA helicase family and is critical for DNA replication, DNA damage repair, and tumor progression. However, its specific role in cervical cancer remains uncertain.</div></div><div><h3>Methods</h3><div>In this study, we aimed to investigate the impact of RECQL4 on cervical cancer prognosis using clinical specimens from The Cancer Genome Atlas. We evaluated the malignant effects of RECQL4 through various experimental assays including cell Cell Counting Kit-8, EdU, colony formation, cell cycle analysis, cell apoptosis, scratch, and Transwell assays. We explored the mechanisms of RECQL4-regulated malignancy using analyses of bioinformatics, RNA sequencing data, polymerase chain reaction (PCR), western blotting, and cell immunofluorescence experiments. Furthermore, we validated the effects of RECQL4 knockdown on tumor growth using subcutaneous tumor models in nude mice.</div></div><div><h3>Results</h3><div>RECQL4 was upregulated in cervical cancer and correlated with prognosis, demonstrating a positive relationship with tumor mutational burden. Knockdown of RECQL4 inhibits cervical cancer cell proliferation, migration, and invasion, suppresses epithelial-mesenchymal transition status, induces cell cycle arrest, and promotes apoptosis. Mechanistically, RECQL4 mediated malignancy through the PI3K/AKT pathway and reduced nuclear β-catenin expression. In vivo studies further confirmed that RECQL4 knockout significantly inhibited tumor growth.</div></div><div><h3>Conclusions</h3><div>Our findings provide novel insights into the mechanism behind RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway. Furthermore, our study suggests potential therapeutic strategies for targeting RECQL4 in cervical cancer treatment.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"50 ","pages":"Article 102146"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the mechanisms of RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway\",\"authors\":\"Wen Huo , Yiheng Huang , Baoqinq Tian , Xiaozheng Chen , Jie Lu , Xinyi Huang , Meng Wu , Jinming Yu , Dawei Chen , Ruozheng Wang\",\"doi\":\"10.1016/j.tranon.2024.102146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>RECQL4 is a member of the DNA helicase family and is critical for DNA replication, DNA damage repair, and tumor progression. However, its specific role in cervical cancer remains uncertain.</div></div><div><h3>Methods</h3><div>In this study, we aimed to investigate the impact of RECQL4 on cervical cancer prognosis using clinical specimens from The Cancer Genome Atlas. We evaluated the malignant effects of RECQL4 through various experimental assays including cell Cell Counting Kit-8, EdU, colony formation, cell cycle analysis, cell apoptosis, scratch, and Transwell assays. We explored the mechanisms of RECQL4-regulated malignancy using analyses of bioinformatics, RNA sequencing data, polymerase chain reaction (PCR), western blotting, and cell immunofluorescence experiments. Furthermore, we validated the effects of RECQL4 knockdown on tumor growth using subcutaneous tumor models in nude mice.</div></div><div><h3>Results</h3><div>RECQL4 was upregulated in cervical cancer and correlated with prognosis, demonstrating a positive relationship with tumor mutational burden. Knockdown of RECQL4 inhibits cervical cancer cell proliferation, migration, and invasion, suppresses epithelial-mesenchymal transition status, induces cell cycle arrest, and promotes apoptosis. Mechanistically, RECQL4 mediated malignancy through the PI3K/AKT pathway and reduced nuclear β-catenin expression. In vivo studies further confirmed that RECQL4 knockout significantly inhibited tumor growth.</div></div><div><h3>Conclusions</h3><div>Our findings provide novel insights into the mechanism behind RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway. Furthermore, our study suggests potential therapeutic strategies for targeting RECQL4 in cervical cancer treatment.</div></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"50 \",\"pages\":\"Article 102146\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1936523324002730\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523324002730","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Unraveling the mechanisms of RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway
Background
RECQL4 is a member of the DNA helicase family and is critical for DNA replication, DNA damage repair, and tumor progression. However, its specific role in cervical cancer remains uncertain.
Methods
In this study, we aimed to investigate the impact of RECQL4 on cervical cancer prognosis using clinical specimens from The Cancer Genome Atlas. We evaluated the malignant effects of RECQL4 through various experimental assays including cell Cell Counting Kit-8, EdU, colony formation, cell cycle analysis, cell apoptosis, scratch, and Transwell assays. We explored the mechanisms of RECQL4-regulated malignancy using analyses of bioinformatics, RNA sequencing data, polymerase chain reaction (PCR), western blotting, and cell immunofluorescence experiments. Furthermore, we validated the effects of RECQL4 knockdown on tumor growth using subcutaneous tumor models in nude mice.
Results
RECQL4 was upregulated in cervical cancer and correlated with prognosis, demonstrating a positive relationship with tumor mutational burden. Knockdown of RECQL4 inhibits cervical cancer cell proliferation, migration, and invasion, suppresses epithelial-mesenchymal transition status, induces cell cycle arrest, and promotes apoptosis. Mechanistically, RECQL4 mediated malignancy through the PI3K/AKT pathway and reduced nuclear β-catenin expression. In vivo studies further confirmed that RECQL4 knockout significantly inhibited tumor growth.
Conclusions
Our findings provide novel insights into the mechanism behind RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway. Furthermore, our study suggests potential therapeutic strategies for targeting RECQL4 in cervical cancer treatment.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.