{"title":"多价口蹄疫疫苗引起的免疫反应及其与埃塞俄比亚吉马镇 diva 试验的兼容性分析。","authors":"Hailehizeb Tegegne, Eyoel Ejigu, Dese Woldegiorgis","doi":"10.1186/s12985-024-02485-w","DOIUrl":null,"url":null,"abstract":"<p><p>The research was conducted in Jimma town, Oromiya Regional State, from October 2022 to June 2023, with the aim of assessing the immune response of polyvalent FMD (Foot and Mouth Disease) vaccine. The study involved 34 cattle in a longitudinal study, divided into two groups: 29 vaccinated and 5 unvaccinated. The vaccinated cattle received an inactivated polyvalent FMD virus vaccine produced by the National Veterinary Institute. Blood samples were collected on days 0, 14, 21, 35, 80, and 125 after vaccination and tested using Virus Neutralization Test and 3ABC ELISA. The results showed a significant increase in neutralizing antibodies against structural proteins in all vaccinated cattle on day 14 after vaccination for all three serotypes. (A/ETH/21/2000, p = 0.015; O/ETH/38/2005, p = 0.017; SAT2/ETH/64/2009, p = 0.007). On day, fourteen of post-vaccination vaccinated group showed immune response equal or above 1.5 log10 in a proportion of 69%, 73% and 94% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The status of raised antibody titer on day 125 post-vaccination showed decreasing by 14%, 18% and 4% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The DIVA test, or 3ABC ELISA, used to differentiate infected from vaccinated animals, revealed the absence of immune response to the Non-structural protein in the vaccinated cattle group. Conversely, the unvaccinated group showed no recorded antibody titer to both structural and non-structural proteins. In summary, the commercially available FMD vaccine, comprising serotype A, O, and SAT2, triggers an immune response to the structural protein rather than the non-structural protein after the initial administration. This outcome implies that FMD vaccines from the National Veterinary Institute align with the DIVA test. Nevertheless, additional efforts may be necessary to bolster the strength and duration of the vaccine-induced immune response.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the immunological response elicited by a polyvalent foot and mouth disease vaccine and its compatibility with a diva test in Jimma Town, Ethiopia.\",\"authors\":\"Hailehizeb Tegegne, Eyoel Ejigu, Dese Woldegiorgis\",\"doi\":\"10.1186/s12985-024-02485-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The research was conducted in Jimma town, Oromiya Regional State, from October 2022 to June 2023, with the aim of assessing the immune response of polyvalent FMD (Foot and Mouth Disease) vaccine. The study involved 34 cattle in a longitudinal study, divided into two groups: 29 vaccinated and 5 unvaccinated. The vaccinated cattle received an inactivated polyvalent FMD virus vaccine produced by the National Veterinary Institute. Blood samples were collected on days 0, 14, 21, 35, 80, and 125 after vaccination and tested using Virus Neutralization Test and 3ABC ELISA. The results showed a significant increase in neutralizing antibodies against structural proteins in all vaccinated cattle on day 14 after vaccination for all three serotypes. (A/ETH/21/2000, p = 0.015; O/ETH/38/2005, p = 0.017; SAT2/ETH/64/2009, p = 0.007). On day, fourteen of post-vaccination vaccinated group showed immune response equal or above 1.5 log10 in a proportion of 69%, 73% and 94% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The status of raised antibody titer on day 125 post-vaccination showed decreasing by 14%, 18% and 4% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The DIVA test, or 3ABC ELISA, used to differentiate infected from vaccinated animals, revealed the absence of immune response to the Non-structural protein in the vaccinated cattle group. Conversely, the unvaccinated group showed no recorded antibody titer to both structural and non-structural proteins. In summary, the commercially available FMD vaccine, comprising serotype A, O, and SAT2, triggers an immune response to the structural protein rather than the non-structural protein after the initial administration. This outcome implies that FMD vaccines from the National Veterinary Institute align with the DIVA test. Nevertheless, additional efforts may be necessary to bolster the strength and duration of the vaccine-induced immune response.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12985-024-02485-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-024-02485-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Analysis of the immunological response elicited by a polyvalent foot and mouth disease vaccine and its compatibility with a diva test in Jimma Town, Ethiopia.
The research was conducted in Jimma town, Oromiya Regional State, from October 2022 to June 2023, with the aim of assessing the immune response of polyvalent FMD (Foot and Mouth Disease) vaccine. The study involved 34 cattle in a longitudinal study, divided into two groups: 29 vaccinated and 5 unvaccinated. The vaccinated cattle received an inactivated polyvalent FMD virus vaccine produced by the National Veterinary Institute. Blood samples were collected on days 0, 14, 21, 35, 80, and 125 after vaccination and tested using Virus Neutralization Test and 3ABC ELISA. The results showed a significant increase in neutralizing antibodies against structural proteins in all vaccinated cattle on day 14 after vaccination for all three serotypes. (A/ETH/21/2000, p = 0.015; O/ETH/38/2005, p = 0.017; SAT2/ETH/64/2009, p = 0.007). On day, fourteen of post-vaccination vaccinated group showed immune response equal or above 1.5 log10 in a proportion of 69%, 73% and 94% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The status of raised antibody titer on day 125 post-vaccination showed decreasing by 14%, 18% and 4% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The DIVA test, or 3ABC ELISA, used to differentiate infected from vaccinated animals, revealed the absence of immune response to the Non-structural protein in the vaccinated cattle group. Conversely, the unvaccinated group showed no recorded antibody titer to both structural and non-structural proteins. In summary, the commercially available FMD vaccine, comprising serotype A, O, and SAT2, triggers an immune response to the structural protein rather than the non-structural protein after the initial administration. This outcome implies that FMD vaccines from the National Veterinary Institute align with the DIVA test. Nevertheless, additional efforts may be necessary to bolster the strength and duration of the vaccine-induced immune response.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.