Xueli Zhang, Dantong Li, Siting Ye, Shunming Liu, Shuo Ma, Min Li, Qiliang Peng, Lianting Hu, Xianwen Shang, Mingguang He, Lei Zhang
{"title":"解码阿尔茨海默病的遗传合并症网络。","authors":"Xueli Zhang, Dantong Li, Siting Ye, Shunming Liu, Shuo Ma, Min Li, Qiliang Peng, Lianting Hu, Xianwen Shang, Mingguang He, Lei Zhang","doi":"10.1186/s13040-024-00394-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) has emerged as the most prevalent and complex neurodegenerative disorder among the elderly population. However, the genetic comorbidity etiology for AD remains poorly understood. In this study, we conducted pleiotropic analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities with 16 pleiotropy genes associated with AD. Through biological functional and network analysis, we elucidated the molecular and functional landscape of AD genetic comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. Our findings deepen the understanding of the occurrence of AD genetic comorbidities and provide new insights for the search for AD diagnostic markers.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"40"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding the genetic comorbidity network of Alzheimer's disease.\",\"authors\":\"Xueli Zhang, Dantong Li, Siting Ye, Shunming Liu, Shuo Ma, Min Li, Qiliang Peng, Lianting Hu, Xianwen Shang, Mingguang He, Lei Zhang\",\"doi\":\"10.1186/s13040-024-00394-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) has emerged as the most prevalent and complex neurodegenerative disorder among the elderly population. However, the genetic comorbidity etiology for AD remains poorly understood. In this study, we conducted pleiotropic analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities with 16 pleiotropy genes associated with AD. Through biological functional and network analysis, we elucidated the molecular and functional landscape of AD genetic comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. Our findings deepen the understanding of the occurrence of AD genetic comorbidities and provide new insights for the search for AD diagnostic markers.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"17 1\",\"pages\":\"40\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00394-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00394-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Decoding the genetic comorbidity network of Alzheimer's disease.
Alzheimer's disease (AD) has emerged as the most prevalent and complex neurodegenerative disorder among the elderly population. However, the genetic comorbidity etiology for AD remains poorly understood. In this study, we conducted pleiotropic analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities with 16 pleiotropy genes associated with AD. Through biological functional and network analysis, we elucidated the molecular and functional landscape of AD genetic comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. Our findings deepen the understanding of the occurrence of AD genetic comorbidities and provide new insights for the search for AD diagnostic markers.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.