Tian Hong Zhang , Xing Chen , Yan Yan Wei , Xiao Chen Tang , Li Hua Xu , Hui Ru Cui , Hai Chun Liu , Zi Xuan Wang , Tao Chen , Chun Bo Li , Ji Jun Wang
{"title":"精神病临床高危人群中细胞因子水平与认知功能之间的关系。","authors":"Tian Hong Zhang , Xing Chen , Yan Yan Wei , Xiao Chen Tang , Li Hua Xu , Hui Ru Cui , Hai Chun Liu , Zi Xuan Wang , Tao Chen , Chun Bo Li , Ji Jun Wang","doi":"10.1016/j.pnpbp.2024.111166","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis.</div></div><div><h3>Method</h3><div>We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS).</div></div><div><h3>Results</h3><div>Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels.</div></div><div><h3>Conclusions</h3><div>Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111166"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations between cytokine levels and cognitive function among individuals at clinical high risk for psychosis\",\"authors\":\"Tian Hong Zhang , Xing Chen , Yan Yan Wei , Xiao Chen Tang , Li Hua Xu , Hui Ru Cui , Hai Chun Liu , Zi Xuan Wang , Tao Chen , Chun Bo Li , Ji Jun Wang\",\"doi\":\"10.1016/j.pnpbp.2024.111166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis.</div></div><div><h3>Method</h3><div>We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS).</div></div><div><h3>Results</h3><div>Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels.</div></div><div><h3>Conclusions</h3><div>Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111166\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624002343\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624002343","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Associations between cytokine levels and cognitive function among individuals at clinical high risk for psychosis
Objective
To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis.
Method
We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS).
Results
Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels.
Conclusions
Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.