{"title":"未来海洋酸化是否会影响海洋鱼类的能量预算?","authors":"Gwangseok R Yoon, Arsheen Bozai, Cosima S Porteus","doi":"10.1093/conphys/coae069","DOIUrl":null,"url":null,"abstract":"<p><p>With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid-base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae069"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459383/pdf/","citationCount":"0","resultStr":"{\"title\":\"Could future ocean acidification be affecting the energy budgets of marine fish?\",\"authors\":\"Gwangseok R Yoon, Arsheen Bozai, Cosima S Porteus\",\"doi\":\"10.1093/conphys/coae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid-base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":\"12 1\",\"pages\":\"coae069\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coae069\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae069","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Could future ocean acidification be affecting the energy budgets of marine fish?
With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid-base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.