Rowyn C. Liebau , Crystal Waters , Arooba Ahmed , Rajesh K. Soni , Jean Gautier
{"title":"UVSSA 可促进 DNA 链间交联的转录耦合修复。","authors":"Rowyn C. Liebau , Crystal Waters , Arooba Ahmed , Rajesh K. Soni , Jean Gautier","doi":"10.1016/j.dnarep.2024.103771","DOIUrl":null,"url":null,"abstract":"<div><div>DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) is critical for ICL repair in human cells, at least in part via the transcription coupled ICL repair (TC-ICR) pathway. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair. UVSSA is required for replication-independent repair of a single ICL in a fluorescence-based reporter assay. UVSSA localizes to chromatin following ICL damage, and interacts with transcribing Pol II, CSA, CSB, and TFIIH. Specifically, UVSSA interaction with TFIIH is required for ICL repair and transcription inhibition blocks localization of transcription coupled repair factors to ICL damaged chromatin. Finally, UVSSA expression positively correlates with ICL-based chemotherapy resistance in human cancer cell lines. Our data strongly suggest that UVSSA is a novel ICL repair factor functioning in TC-ICR. These results provide further evidence that TC-ICR is a <em>bona fide</em> ICL repair mechanism that contributes to crosslinker drug resistance independently of replication-coupled ICL repair.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"143 ","pages":"Article 103771"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UVSSA facilitates transcription-coupled repair of DNA interstrand crosslinks\",\"authors\":\"Rowyn C. Liebau , Crystal Waters , Arooba Ahmed , Rajesh K. Soni , Jean Gautier\",\"doi\":\"10.1016/j.dnarep.2024.103771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) is critical for ICL repair in human cells, at least in part via the transcription coupled ICL repair (TC-ICR) pathway. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair. UVSSA is required for replication-independent repair of a single ICL in a fluorescence-based reporter assay. UVSSA localizes to chromatin following ICL damage, and interacts with transcribing Pol II, CSA, CSB, and TFIIH. Specifically, UVSSA interaction with TFIIH is required for ICL repair and transcription inhibition blocks localization of transcription coupled repair factors to ICL damaged chromatin. Finally, UVSSA expression positively correlates with ICL-based chemotherapy resistance in human cancer cell lines. Our data strongly suggest that UVSSA is a novel ICL repair factor functioning in TC-ICR. These results provide further evidence that TC-ICR is a <em>bona fide</em> ICL repair mechanism that contributes to crosslinker drug resistance independently of replication-coupled ICL repair.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"143 \",\"pages\":\"Article 103771\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424001472\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001472","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
UVSSA facilitates transcription-coupled repair of DNA interstrand crosslinks
DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) is critical for ICL repair in human cells, at least in part via the transcription coupled ICL repair (TC-ICR) pathway. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair. UVSSA is required for replication-independent repair of a single ICL in a fluorescence-based reporter assay. UVSSA localizes to chromatin following ICL damage, and interacts with transcribing Pol II, CSA, CSB, and TFIIH. Specifically, UVSSA interaction with TFIIH is required for ICL repair and transcription inhibition blocks localization of transcription coupled repair factors to ICL damaged chromatin. Finally, UVSSA expression positively correlates with ICL-based chemotherapy resistance in human cancer cell lines. Our data strongly suggest that UVSSA is a novel ICL repair factor functioning in TC-ICR. These results provide further evidence that TC-ICR is a bona fide ICL repair mechanism that contributes to crosslinker drug resistance independently of replication-coupled ICL repair.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.