桡动脉初始僵硬度的无创测量技术。

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-05 DOI:10.1016/j.jmbbm.2024.106765
Yixing Zhang , Xue Feng , Mingxing Shi , Yinji Ma
{"title":"桡动脉初始僵硬度的无创测量技术。","authors":"Yixing Zhang ,&nbsp;Xue Feng ,&nbsp;Mingxing Shi ,&nbsp;Yinji Ma","doi":"10.1016/j.jmbbm.2024.106765","DOIUrl":null,"url":null,"abstract":"<div><div>Arterial stiffness carries significant implications for cardiovascular disease. Monitoring changes in arterial stiffness is integral to proactive health management, however, current noninvasive methods of quantifying stiffness in vivo rely primarily on linear tangent stiffness, making the measurements vulnerable to the variability of blood pressure and thereby affecting the accuracy in portraying the health status of the arteries. This study proposed a novel methodology for evaluating arterial stiffness that is unaffected by changes in blood pressure. Ultrasound detection techniques are applied to accurately chronicle changes in radial artery diameters across varied blood pressures. Incorporating blood pressure measurements, the initial diameter at cuff blockade, and vessel diameters at systolic and diastolic pressures enables inverse determination of the unstressed initial radial artery stiffness. This method accurately mirrors the results of in vitro experiments employing porcine blood vessels at physiological pressures. The results underscore the technique's ability to quantify arterial mechanical properties precisely. This study offers a groundbreaking strategy for fostering the early detection of atherosclerosis, and aiding artery health regulation.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106765"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A noninvasive measurement technique for the initial stiffness of the radial artery\",\"authors\":\"Yixing Zhang ,&nbsp;Xue Feng ,&nbsp;Mingxing Shi ,&nbsp;Yinji Ma\",\"doi\":\"10.1016/j.jmbbm.2024.106765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arterial stiffness carries significant implications for cardiovascular disease. Monitoring changes in arterial stiffness is integral to proactive health management, however, current noninvasive methods of quantifying stiffness in vivo rely primarily on linear tangent stiffness, making the measurements vulnerable to the variability of blood pressure and thereby affecting the accuracy in portraying the health status of the arteries. This study proposed a novel methodology for evaluating arterial stiffness that is unaffected by changes in blood pressure. Ultrasound detection techniques are applied to accurately chronicle changes in radial artery diameters across varied blood pressures. Incorporating blood pressure measurements, the initial diameter at cuff blockade, and vessel diameters at systolic and diastolic pressures enables inverse determination of the unstressed initial radial artery stiffness. This method accurately mirrors the results of in vitro experiments employing porcine blood vessels at physiological pressures. The results underscore the technique's ability to quantify arterial mechanical properties precisely. This study offers a groundbreaking strategy for fostering the early detection of atherosclerosis, and aiding artery health regulation.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106765\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003977\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003977","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

动脉僵化对心血管疾病有重大影响。然而,目前量化体内动脉僵化的无创方法主要依赖于线性正切僵化,这使得测量结果容易受到血压变化的影响,从而影响了描述动脉健康状况的准确性。本研究提出了一种不受血压变化影响的新型动脉僵化评估方法。应用超声检测技术可准确记录不同血压下桡动脉直径的变化。结合血压测量、袖带阻断时的初始直径以及收缩压和舒张压时的血管直径,可以反向确定未受压时的初始桡动脉僵硬度。该方法准确反映了猪血管在生理压力下的体外实验结果。结果凸显了该技术精确量化动脉机械特性的能力。这项研究为促进动脉粥样硬化的早期检测和动脉健康调节提供了突破性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A noninvasive measurement technique for the initial stiffness of the radial artery
Arterial stiffness carries significant implications for cardiovascular disease. Monitoring changes in arterial stiffness is integral to proactive health management, however, current noninvasive methods of quantifying stiffness in vivo rely primarily on linear tangent stiffness, making the measurements vulnerable to the variability of blood pressure and thereby affecting the accuracy in portraying the health status of the arteries. This study proposed a novel methodology for evaluating arterial stiffness that is unaffected by changes in blood pressure. Ultrasound detection techniques are applied to accurately chronicle changes in radial artery diameters across varied blood pressures. Incorporating blood pressure measurements, the initial diameter at cuff blockade, and vessel diameters at systolic and diastolic pressures enables inverse determination of the unstressed initial radial artery stiffness. This method accurately mirrors the results of in vitro experiments employing porcine blood vessels at physiological pressures. The results underscore the technique's ability to quantify arterial mechanical properties precisely. This study offers a groundbreaking strategy for fostering the early detection of atherosclerosis, and aiding artery health regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Macroscopic creep behavior of spheroids derived from mesenchymal stem cells under compression Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy Editorial Board Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents Plastic strain localization in Bouligand structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1