{"title":"通过离网格稀疏贝叶斯学习,为地面穿透雷达勘测提供基于共主采样的时延估计","authors":"Jingjing Pan;Huimin Pan;Meng Sun;Yide Wang;Vincent Baltazart;Xudong Dong;Jun Zhao;Xiaofei Zhang;Hing Cheung So","doi":"10.1109/TRS.2024.3467993","DOIUrl":null,"url":null,"abstract":"Time-delay estimation (TDE) using ground penetrating radar (GPR) is of great importance in roadway surveys. The conventional GPR methods apply a uniform sampling strategy for TDE, which requires numerous frequency sampling points, leading to lengthy data acquisition time and large data storage, especially for ultra-wideband (UWB) radar. Moreover, detecting the overlapped backscattered echoes from the thin layer of roadways remains a challenge in TDE, due to the limited resolution of GPR and the characteristics of GPR signals. To address these issues, we derive a co-prime sampling strategy-based TDE for thin layers in roadway survey by exploiting off-grid sparse Bayesian learning (OGSBL), referred to co-prime-OGSBL. In our scheme, the sampling rate of GPR signals with a co-prime sampling strategy is greatly reduced compared with the uniform sampling, which therefore reduces the data acquisition burden and computational complexity. The estimation performance of time delays and thickness is also enhanced with OGSBL by utilizing radar pulse, co-prime sampling, and noncircularity of GPR signals. Both simulation and experimental results demonstrate the efficiency and accuracy of the proposed method in the estimation of time delays and thickness.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"966-978"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Prime Sampling-Based Time-Delay Estimation for Roadway Survey by Ground Penetrating Radar via Off-Grid Sparse Bayesian Learning\",\"authors\":\"Jingjing Pan;Huimin Pan;Meng Sun;Yide Wang;Vincent Baltazart;Xudong Dong;Jun Zhao;Xiaofei Zhang;Hing Cheung So\",\"doi\":\"10.1109/TRS.2024.3467993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-delay estimation (TDE) using ground penetrating radar (GPR) is of great importance in roadway surveys. The conventional GPR methods apply a uniform sampling strategy for TDE, which requires numerous frequency sampling points, leading to lengthy data acquisition time and large data storage, especially for ultra-wideband (UWB) radar. Moreover, detecting the overlapped backscattered echoes from the thin layer of roadways remains a challenge in TDE, due to the limited resolution of GPR and the characteristics of GPR signals. To address these issues, we derive a co-prime sampling strategy-based TDE for thin layers in roadway survey by exploiting off-grid sparse Bayesian learning (OGSBL), referred to co-prime-OGSBL. In our scheme, the sampling rate of GPR signals with a co-prime sampling strategy is greatly reduced compared with the uniform sampling, which therefore reduces the data acquisition burden and computational complexity. The estimation performance of time delays and thickness is also enhanced with OGSBL by utilizing radar pulse, co-prime sampling, and noncircularity of GPR signals. Both simulation and experimental results demonstrate the efficiency and accuracy of the proposed method in the estimation of time delays and thickness.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"966-978\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693623/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10693623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-Prime Sampling-Based Time-Delay Estimation for Roadway Survey by Ground Penetrating Radar via Off-Grid Sparse Bayesian Learning
Time-delay estimation (TDE) using ground penetrating radar (GPR) is of great importance in roadway surveys. The conventional GPR methods apply a uniform sampling strategy for TDE, which requires numerous frequency sampling points, leading to lengthy data acquisition time and large data storage, especially for ultra-wideband (UWB) radar. Moreover, detecting the overlapped backscattered echoes from the thin layer of roadways remains a challenge in TDE, due to the limited resolution of GPR and the characteristics of GPR signals. To address these issues, we derive a co-prime sampling strategy-based TDE for thin layers in roadway survey by exploiting off-grid sparse Bayesian learning (OGSBL), referred to co-prime-OGSBL. In our scheme, the sampling rate of GPR signals with a co-prime sampling strategy is greatly reduced compared with the uniform sampling, which therefore reduces the data acquisition burden and computational complexity. The estimation performance of time delays and thickness is also enhanced with OGSBL by utilizing radar pulse, co-prime sampling, and noncircularity of GPR signals. Both simulation and experimental results demonstrate the efficiency and accuracy of the proposed method in the estimation of time delays and thickness.