Ahmed R. El-gabri, Hussein A. Aly, Tarek S. Ghoniemy, Mohamed A. Elshafey
{"title":"DLRA-Net:用于光谱超分辨率的具有上下文细化功能的深度局部残留注意力网络","authors":"Ahmed R. El-gabri, Hussein A. Aly, Tarek S. Ghoniemy, Mohamed A. Elshafey","doi":"10.1007/s11263-024-02238-w","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral Images (HSIs) provide detailed scene insights using extensive spectral bands, crucial for material discrimination and earth observation with substantial costs and low spatial resolution. Recently, Convolutional Neural Networks (CNNs) are common choice for Spectral Super-Resolution (SSR) from Multispectral Images (MSIs). However, they often fail to simultaneously exploit pixel-level noise degradation of MSIs and complex contextual spatial-spectral characteristics of HSIs. In this paper, a Deep Local Residual Attention Network with Contextual Refinement Network (DLRA-Net) is proposed to integrate local low-rank spectral and global contextual priors for improved SSR. Specifically, SSR is unfolded into Contextual-attention Refinement Module (CRM) and Dual Local Residual Attention Module (DLRAM). CRM is proposed to adaptively learn complex contextual priors to guide the convolution layer weights for improved spatial restorations. While DLRAM captures deep refined texture details to enhance contextual priors representations for recovering HSIs. Moreover, lateral fusion strategy is designed to integrate the obtained priors among DLRAMs for faster network convergence. Experimental results on natural-scene datasets with practical noise patterns confirm exceptional DLRA-Net performance with relatively small model size. DLRA-Net demonstrates Maximum Relative Improvements (MRI) between 9.71 and 58.58% in Mean Relative Absolute Error (MRAE) with reduced parameters between 52.18 and 85.85%. Besides, a practical RS-HSI dataset is generated for evaluations showing MRI between 8.64 and 50.56% in MRAE. Furthermore, experiments with HSI classifiers indicate improved performance of reconstructed RS-HSIs compared to RS-MSIs, with MRI in Overall Accuracy (OA) between 7.10 and 15.27%. Lastly, a detailed ablation study assesses model complexity and runtime.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"43 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DLRA-Net: Deep Local Residual Attention Network with Contextual Refinement for Spectral Super-Resolution\",\"authors\":\"Ahmed R. El-gabri, Hussein A. Aly, Tarek S. Ghoniemy, Mohamed A. Elshafey\",\"doi\":\"10.1007/s11263-024-02238-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperspectral Images (HSIs) provide detailed scene insights using extensive spectral bands, crucial for material discrimination and earth observation with substantial costs and low spatial resolution. Recently, Convolutional Neural Networks (CNNs) are common choice for Spectral Super-Resolution (SSR) from Multispectral Images (MSIs). However, they often fail to simultaneously exploit pixel-level noise degradation of MSIs and complex contextual spatial-spectral characteristics of HSIs. In this paper, a Deep Local Residual Attention Network with Contextual Refinement Network (DLRA-Net) is proposed to integrate local low-rank spectral and global contextual priors for improved SSR. Specifically, SSR is unfolded into Contextual-attention Refinement Module (CRM) and Dual Local Residual Attention Module (DLRAM). CRM is proposed to adaptively learn complex contextual priors to guide the convolution layer weights for improved spatial restorations. While DLRAM captures deep refined texture details to enhance contextual priors representations for recovering HSIs. Moreover, lateral fusion strategy is designed to integrate the obtained priors among DLRAMs for faster network convergence. Experimental results on natural-scene datasets with practical noise patterns confirm exceptional DLRA-Net performance with relatively small model size. DLRA-Net demonstrates Maximum Relative Improvements (MRI) between 9.71 and 58.58% in Mean Relative Absolute Error (MRAE) with reduced parameters between 52.18 and 85.85%. Besides, a practical RS-HSI dataset is generated for evaluations showing MRI between 8.64 and 50.56% in MRAE. Furthermore, experiments with HSI classifiers indicate improved performance of reconstructed RS-HSIs compared to RS-MSIs, with MRI in Overall Accuracy (OA) between 7.10 and 15.27%. Lastly, a detailed ablation study assesses model complexity and runtime.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02238-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02238-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DLRA-Net: Deep Local Residual Attention Network with Contextual Refinement for Spectral Super-Resolution
Hyperspectral Images (HSIs) provide detailed scene insights using extensive spectral bands, crucial for material discrimination and earth observation with substantial costs and low spatial resolution. Recently, Convolutional Neural Networks (CNNs) are common choice for Spectral Super-Resolution (SSR) from Multispectral Images (MSIs). However, they often fail to simultaneously exploit pixel-level noise degradation of MSIs and complex contextual spatial-spectral characteristics of HSIs. In this paper, a Deep Local Residual Attention Network with Contextual Refinement Network (DLRA-Net) is proposed to integrate local low-rank spectral and global contextual priors for improved SSR. Specifically, SSR is unfolded into Contextual-attention Refinement Module (CRM) and Dual Local Residual Attention Module (DLRAM). CRM is proposed to adaptively learn complex contextual priors to guide the convolution layer weights for improved spatial restorations. While DLRAM captures deep refined texture details to enhance contextual priors representations for recovering HSIs. Moreover, lateral fusion strategy is designed to integrate the obtained priors among DLRAMs for faster network convergence. Experimental results on natural-scene datasets with practical noise patterns confirm exceptional DLRA-Net performance with relatively small model size. DLRA-Net demonstrates Maximum Relative Improvements (MRI) between 9.71 and 58.58% in Mean Relative Absolute Error (MRAE) with reduced parameters between 52.18 and 85.85%. Besides, a practical RS-HSI dataset is generated for evaluations showing MRI between 8.64 and 50.56% in MRAE. Furthermore, experiments with HSI classifiers indicate improved performance of reconstructed RS-HSIs compared to RS-MSIs, with MRI in Overall Accuracy (OA) between 7.10 and 15.27%. Lastly, a detailed ablation study assesses model complexity and runtime.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.