黑氧化锆阴极涂层可促进锂离子电池的电荷扩散和表面晶格稳定

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-10-10 DOI:10.1039/d4ta05179c
Yoo Jung Choi, Sungbin Jang, Hongjun Chang, You Jin Kim, Suji Kim, Ga-Yoon Kim, Juho Lee, Janghyuk Moon, Jinsoo Kim, Won-Hee Ryu
{"title":"黑氧化锆阴极涂层可促进锂离子电池的电荷扩散和表面晶格稳定","authors":"Yoo Jung Choi, Sungbin Jang, Hongjun Chang, You Jin Kim, Suji Kim, Ga-Yoon Kim, Juho Lee, Janghyuk Moon, Jinsoo Kim, Won-Hee Ryu","doi":"10.1039/d4ta05179c","DOIUrl":null,"url":null,"abstract":"The conformal surface coating of Ni-rich layered cathode materials is essential for mitigating their interfacial and subsequent structural degradation. Zirconia (ZrO2) coating effectively enhances the surface stability of the cathode owing to its excellent chemical durability; however, the insulating electrical conductivity of ZrO2 increases the electrode resistance of the electrode and triggers efficiency decay. Here, we propose a highly conductive oxygen-deficient black ZrO2−x as a charge-conductive coating material. The black ZrO2−x is uniformly coated onto the Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC) surface via solvent-free mechanochemical shearing process. Benefiting from the black ZrO2−x coating layer, black ZrO2−x coated NMC shows improved cycling characteristics and better rate capability than both bare NMC and ZrO2 coated NMC. The enhanced electrochemical operations by the conformal coating of black ZrO2−x mainly results from enhanced charge transfer, reduced gas evolution, and mitigated microstructure cracking. Density functional theory calculations confirmed that the defective structure of black ZrO2−x lowers the energy barrier for Li ion transfer, and strong hybridization between Zr in black ZrO2−x and O in NMC mitigates oxygen evolution.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Zirconia Cathode Coating Layer Enabling Facile Charge Diffusion and Surface Lattice Stabilization for Lithium-Ion Batteries\",\"authors\":\"Yoo Jung Choi, Sungbin Jang, Hongjun Chang, You Jin Kim, Suji Kim, Ga-Yoon Kim, Juho Lee, Janghyuk Moon, Jinsoo Kim, Won-Hee Ryu\",\"doi\":\"10.1039/d4ta05179c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conformal surface coating of Ni-rich layered cathode materials is essential for mitigating their interfacial and subsequent structural degradation. Zirconia (ZrO2) coating effectively enhances the surface stability of the cathode owing to its excellent chemical durability; however, the insulating electrical conductivity of ZrO2 increases the electrode resistance of the electrode and triggers efficiency decay. Here, we propose a highly conductive oxygen-deficient black ZrO2−x as a charge-conductive coating material. The black ZrO2−x is uniformly coated onto the Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC) surface via solvent-free mechanochemical shearing process. Benefiting from the black ZrO2−x coating layer, black ZrO2−x coated NMC shows improved cycling characteristics and better rate capability than both bare NMC and ZrO2 coated NMC. The enhanced electrochemical operations by the conformal coating of black ZrO2−x mainly results from enhanced charge transfer, reduced gas evolution, and mitigated microstructure cracking. Density functional theory calculations confirmed that the defective structure of black ZrO2−x lowers the energy barrier for Li ion transfer, and strong hybridization between Zr in black ZrO2−x and O in NMC mitigates oxygen evolution.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta05179c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05179c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

富镍层状阴极材料的保形表面涂层对于减轻其界面退化和随后的结构退化至关重要。氧化锆(ZrO2)涂层具有优异的化学耐久性,可有效增强阴极的表面稳定性;然而,ZrO2 的绝缘导电性会增加电极的电极电阻,并引发效率衰减。在此,我们提出了一种高导电性缺氧黑 ZrO2-x 作为电荷传导涂层材料。通过无溶剂机械化学剪切工艺,将黑色 ZrO2-x 均匀涂覆在富镍 LiNi0.8Mn0.1Co0.1O2 (NMC) 表面。得益于黑色 ZrO2-x 涂层,黑色 ZrO2-x 涂层 NMC 比裸露的 NMC 和 ZrO2 涂层 NMC 显示出更好的循环特性和速率能力。黑色 ZrO2-x 保形涂层增强电化学操作的主要原因是电荷转移增强、气体演化减少和微结构开裂减轻。密度泛函理论计算证实,黑 ZrO2-x 的缺陷结构降低了锂离子转移的能量势垒,黑 ZrO2-x 中的 Zr 与 NMC 中的 O 之间的强杂化作用减轻了氧的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Black Zirconia Cathode Coating Layer Enabling Facile Charge Diffusion and Surface Lattice Stabilization for Lithium-Ion Batteries
The conformal surface coating of Ni-rich layered cathode materials is essential for mitigating their interfacial and subsequent structural degradation. Zirconia (ZrO2) coating effectively enhances the surface stability of the cathode owing to its excellent chemical durability; however, the insulating electrical conductivity of ZrO2 increases the electrode resistance of the electrode and triggers efficiency decay. Here, we propose a highly conductive oxygen-deficient black ZrO2−x as a charge-conductive coating material. The black ZrO2−x is uniformly coated onto the Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC) surface via solvent-free mechanochemical shearing process. Benefiting from the black ZrO2−x coating layer, black ZrO2−x coated NMC shows improved cycling characteristics and better rate capability than both bare NMC and ZrO2 coated NMC. The enhanced electrochemical operations by the conformal coating of black ZrO2−x mainly results from enhanced charge transfer, reduced gas evolution, and mitigated microstructure cracking. Density functional theory calculations confirmed that the defective structure of black ZrO2−x lowers the energy barrier for Li ion transfer, and strong hybridization between Zr in black ZrO2−x and O in NMC mitigates oxygen evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Application and prospects of metal-organic frameworks in photocatalytic self-cleaning membranes for wastewater treatment Aqueous Synthesis of Lithium Superionic−Conducting Complex Hydride Solid Electrolytes A stable and flexible FP-RRAM with in-situ covalently constructed 3D dendrimer framework Electrochemical glucose-to-formic acid conversion coupled with alkaline hydrogen production over nanostructured CuCo2O4 catalysts Reversible K-Ion Intercalation in CrSe2 Cathodes for Potassium-Ion Batteries: Combined Operando PXRD and DFT studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1