Licheng Zhou, Kaijie Zhou, Yu Chang, Jianzhang Yang, Bohai Fan, Yuhan Su, Zilu Li, Rahul Mannan, Somnath Mahapatra, Ming Ding, Fengtao Zhou, Weixue Huang, Xiaomei Ren, Jian Xu, George Xiaoju Wang, Jinwei Zhang, Zhen Wang, Arul M. Chinnaiyan, Ke Ding
{"title":"发现 ZLC491 是一种强效、选择性和可口服的 CDK12/13 PROTAC 降解剂","authors":"Licheng Zhou, Kaijie Zhou, Yu Chang, Jianzhang Yang, Bohai Fan, Yuhan Su, Zilu Li, Rahul Mannan, Somnath Mahapatra, Ming Ding, Fengtao Zhou, Weixue Huang, Xiaomei Ren, Jian Xu, George Xiaoju Wang, Jinwei Zhang, Zhen Wang, Arul M. Chinnaiyan, Ke Ding","doi":"10.1021/acs.jmedchem.4c01596","DOIUrl":null,"url":null,"abstract":"Selective degradation of cyclin-dependent kinases 12 and 13 (CDK12/13) emerges as a new potential therapeutic approach for triple-negative breast cancer (TNBC) and other human cancers. While several proteolysis-targeting chimera (PROTAC) degraders of CDK12/13 were reported, none are orally bioavailable. Here, we report the discovery of <b>ZLC491</b> as a potent, selective, and orally bioavailable CDK12/13 PROTAC degrader. The compound effectively degraded CDK12 and CDK13 with DC<sub>50</sub> values of 32 and 28 nM, respectively, in TNBC MDA-MB-231 cells. Global proteomic assessment and mechanistic studies revealed that <b>ZLC491</b> selectively induced CDK12/13 degradation in a cereblon- and proteasome-dependent manner. Furthermore, the molecule efficiently suppressed transcription and expression of long genes, predominantly a subset of genes associated with DNA damage response, and significantly inhibited proliferation of multiple TNBC cell lines. Importantly, <b>ZLC491</b> achieved an oral bioavailability of 46.8% in rats and demonstrated potent <i>in vivo</i> degradative effects on CDK12/13 in an MDA-MB-231 xenografted mouse model.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"2 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of ZLC491 as a Potent, Selective, and Orally Bioavailable CDK12/13 PROTAC Degrader\",\"authors\":\"Licheng Zhou, Kaijie Zhou, Yu Chang, Jianzhang Yang, Bohai Fan, Yuhan Su, Zilu Li, Rahul Mannan, Somnath Mahapatra, Ming Ding, Fengtao Zhou, Weixue Huang, Xiaomei Ren, Jian Xu, George Xiaoju Wang, Jinwei Zhang, Zhen Wang, Arul M. Chinnaiyan, Ke Ding\",\"doi\":\"10.1021/acs.jmedchem.4c01596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective degradation of cyclin-dependent kinases 12 and 13 (CDK12/13) emerges as a new potential therapeutic approach for triple-negative breast cancer (TNBC) and other human cancers. While several proteolysis-targeting chimera (PROTAC) degraders of CDK12/13 were reported, none are orally bioavailable. Here, we report the discovery of <b>ZLC491</b> as a potent, selective, and orally bioavailable CDK12/13 PROTAC degrader. The compound effectively degraded CDK12 and CDK13 with DC<sub>50</sub> values of 32 and 28 nM, respectively, in TNBC MDA-MB-231 cells. Global proteomic assessment and mechanistic studies revealed that <b>ZLC491</b> selectively induced CDK12/13 degradation in a cereblon- and proteasome-dependent manner. Furthermore, the molecule efficiently suppressed transcription and expression of long genes, predominantly a subset of genes associated with DNA damage response, and significantly inhibited proliferation of multiple TNBC cell lines. Importantly, <b>ZLC491</b> achieved an oral bioavailability of 46.8% in rats and demonstrated potent <i>in vivo</i> degradative effects on CDK12/13 in an MDA-MB-231 xenografted mouse model.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01596\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01596","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of ZLC491 as a Potent, Selective, and Orally Bioavailable CDK12/13 PROTAC Degrader
Selective degradation of cyclin-dependent kinases 12 and 13 (CDK12/13) emerges as a new potential therapeutic approach for triple-negative breast cancer (TNBC) and other human cancers. While several proteolysis-targeting chimera (PROTAC) degraders of CDK12/13 were reported, none are orally bioavailable. Here, we report the discovery of ZLC491 as a potent, selective, and orally bioavailable CDK12/13 PROTAC degrader. The compound effectively degraded CDK12 and CDK13 with DC50 values of 32 and 28 nM, respectively, in TNBC MDA-MB-231 cells. Global proteomic assessment and mechanistic studies revealed that ZLC491 selectively induced CDK12/13 degradation in a cereblon- and proteasome-dependent manner. Furthermore, the molecule efficiently suppressed transcription and expression of long genes, predominantly a subset of genes associated with DNA damage response, and significantly inhibited proliferation of multiple TNBC cell lines. Importantly, ZLC491 achieved an oral bioavailability of 46.8% in rats and demonstrated potent in vivo degradative effects on CDK12/13 in an MDA-MB-231 xenografted mouse model.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.