用于全固态锂金属电池的软基阴离子固定共价有机框架的 Li+ 传导能力

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-10-10 DOI:10.1021/acsenergylett.4c01941
Rak Hyeon Choi, Jungjeong So, Younghun Kim, Dongwhan Lee, Hye Ryung Byon
{"title":"用于全固态锂金属电池的软基阴离子固定共价有机框架的 Li+ 传导能力","authors":"Rak Hyeon Choi, Jungjeong So, Younghun Kim, Dongwhan Lee, Hye Ryung Byon","doi":"10.1021/acsenergylett.4c01941","DOIUrl":null,"url":null,"abstract":"Organic solid-state electrolytes (SSEs) offer improved safety and flexibility, but they face challenges with low ionic conductivity at room temperature. Covalent organic frameworks (COFs) present a promising solution by preventing segmental motion and facilitating Li<sup>+</sup> ion transfer through nanoporous channels with regularly aligned anionic groups. In particular, dissociating Li<sup>+</sup> ions from these immobilized anionic groups is crucial for increasing Li<sup>+</sup> ion conductivity. However, the design of COFs with electron-delocalized and soft bases, such as fluorinated sulfonimides anionic groups, for easier Li<sup>+</sup> dissociation has been hindered by the challenging synthesis of these building blocks. Here, we successfully synthesized sulfonyl(trifluoromethanesulfonyl)imide (TFSI<sup>–</sup>)-functionalized COFs and demonstrated a remarkable Li<sup>+</sup> ion conductivity of 7.65 × 10<sup>–5</sup> S cm<sup>–1</sup> at 25 °C, which surpasses all known organic SSEs. This single Li<sup>+</sup> ion conductor achieved over 200 times cyclability in Li and LiFePO<sub>4</sub> cells, representing a substantial step toward developing better organic SSEs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li+ Conduction of Soft-Base Anion-Immobilized Covalent Organic Frameworks for All-Solid-State Lithium–Metal Batteries\",\"authors\":\"Rak Hyeon Choi, Jungjeong So, Younghun Kim, Dongwhan Lee, Hye Ryung Byon\",\"doi\":\"10.1021/acsenergylett.4c01941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic solid-state electrolytes (SSEs) offer improved safety and flexibility, but they face challenges with low ionic conductivity at room temperature. Covalent organic frameworks (COFs) present a promising solution by preventing segmental motion and facilitating Li<sup>+</sup> ion transfer through nanoporous channels with regularly aligned anionic groups. In particular, dissociating Li<sup>+</sup> ions from these immobilized anionic groups is crucial for increasing Li<sup>+</sup> ion conductivity. However, the design of COFs with electron-delocalized and soft bases, such as fluorinated sulfonimides anionic groups, for easier Li<sup>+</sup> dissociation has been hindered by the challenging synthesis of these building blocks. Here, we successfully synthesized sulfonyl(trifluoromethanesulfonyl)imide (TFSI<sup>–</sup>)-functionalized COFs and demonstrated a remarkable Li<sup>+</sup> ion conductivity of 7.65 × 10<sup>–5</sup> S cm<sup>–1</sup> at 25 °C, which surpasses all known organic SSEs. This single Li<sup>+</sup> ion conductor achieved over 200 times cyclability in Li and LiFePO<sub>4</sub> cells, representing a substantial step toward developing better organic SSEs.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01941\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机固态电解质(SSE)具有更高的安全性和灵活性,但也面临着室温下离子电导率低的挑战。共价有机框架(COFs)通过防止片段运动和促进 Li+ 离子通过具有规则排列阴离子基团的纳米多孔通道转移,提供了一种很有前景的解决方案。特别是,将 Li+ 离子从这些固定的阴离子基团中解离出来对于提高 Li+ 离子的传导性至关重要。然而,为了更容易地解离 Li+,设计具有电子遥感和软碱(如含氟磺酰亚胺阴离子基团)的 COF 时,一直受阻于这些构件的高难度合成。在这里,我们成功合成了磺酰基(三氟甲烷磺酰基)亚胺(TFSI-)官能化 COFs,并在 25 °C 时证明了 7.65 × 10-5 S cm-1 的显著 Li+ 离子电导率,超过了所有已知的有机 SSE。这种单一的 Li+ 离子导体在锂电池和磷酸铁锂电池中的循环能力超过了 200 倍,标志着向开发更好的有机 SSE 迈出了实质性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li+ Conduction of Soft-Base Anion-Immobilized Covalent Organic Frameworks for All-Solid-State Lithium–Metal Batteries
Organic solid-state electrolytes (SSEs) offer improved safety and flexibility, but they face challenges with low ionic conductivity at room temperature. Covalent organic frameworks (COFs) present a promising solution by preventing segmental motion and facilitating Li+ ion transfer through nanoporous channels with regularly aligned anionic groups. In particular, dissociating Li+ ions from these immobilized anionic groups is crucial for increasing Li+ ion conductivity. However, the design of COFs with electron-delocalized and soft bases, such as fluorinated sulfonimides anionic groups, for easier Li+ dissociation has been hindered by the challenging synthesis of these building blocks. Here, we successfully synthesized sulfonyl(trifluoromethanesulfonyl)imide (TFSI)-functionalized COFs and demonstrated a remarkable Li+ ion conductivity of 7.65 × 10–5 S cm–1 at 25 °C, which surpasses all known organic SSEs. This single Li+ ion conductor achieved over 200 times cyclability in Li and LiFePO4 cells, representing a substantial step toward developing better organic SSEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Emerging All-Solid-State Lithium–Sulfur Batteries: Holy Grails for Future Secondary Batteries LiF in Inverted Perovskite Solar Cells: Dipole or Doping? Chemical Roadmap toward Stable Electrolyte–Electrode Interfaces in All-Solid-State Batteries Quantifying the Effect of Interfacial Dipoles on the Energy Level Alignment of Metal-Halide Perovskites Li+ Conduction of Soft-Base Anion-Immobilized Covalent Organic Frameworks for All-Solid-State Lithium–Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1