{"title":"灯笼状卡塞兰超相中被困分子的行为。","authors":"Andrzej Eilmes, Mirosław Jabłoński","doi":"10.1021/acs.jcim.4c01040","DOIUrl":null,"url":null,"abstract":"<p><p>Superphanes are a group of organic molecules from the cyclophane family. They are characterized by the presence of two parallel benzene rings joined together by six bridges. If these bridges are sufficiently long, the superphane cavity can be large enough to trap small molecules or ions. Using ab initio (time scale of 80 ps) and classical (up to 200 ns) molecular dynamics (MD) methods, we study the behavior of five fundamental molecules (M = H<sub>2</sub>O, NH<sub>3</sub>, HF, HCN, MeOH) encapsulated inside the experimentally reported lantern-like superphane and its two derivatives featuring slightly modified side bridges. The main focus is studying the dynamics of hydrogen bonds between the trapped M molecule and the imino nitrogen atoms of the side chains of the host superphane. The length of the N···H hydrogen bond increases in the following order: HF < HCN < H<sub>2</sub>O < MeOH < NH<sub>3</sub>. The mobility of the trapped molecule and its preferred position inside the superphane cage depend not only on the type of this molecule but also largely on the in/out conformational arrangement of the imino nitrogens in the side chains of the superphane. Their inward-pointing positions allow the formation of strong N···H hydrogen bonds. For this reason, these nitrogens are the preferred sites of interaction. The mobility of the molecules and their residence times on each side of the superphane have been explained by referring to the symmetry and conformation of the given superphane cage. All force field MD simulations have shown that the encapsulated molecule remained inside the superphane cage for 200 ns without any escape event to the outside. Moreover, our simulations based on some endohedral complexes in the water box also showed no exchange event. Thus, the superphanes we study are true carcerand molecules. We attribute this property to the hydrophobic side chains and their pinwheel arrangement, which makes the side walls of the studied superphanes fairly impenetrable to small molecules.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"7925-7937"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523074/pdf/","citationCount":"0","resultStr":"{\"title\":\"Behavior of Trapped Molecules in Lantern-Like Carcerand Superphanes.\",\"authors\":\"Andrzej Eilmes, Mirosław Jabłoński\",\"doi\":\"10.1021/acs.jcim.4c01040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Superphanes are a group of organic molecules from the cyclophane family. They are characterized by the presence of two parallel benzene rings joined together by six bridges. If these bridges are sufficiently long, the superphane cavity can be large enough to trap small molecules or ions. Using ab initio (time scale of 80 ps) and classical (up to 200 ns) molecular dynamics (MD) methods, we study the behavior of five fundamental molecules (M = H<sub>2</sub>O, NH<sub>3</sub>, HF, HCN, MeOH) encapsulated inside the experimentally reported lantern-like superphane and its two derivatives featuring slightly modified side bridges. The main focus is studying the dynamics of hydrogen bonds between the trapped M molecule and the imino nitrogen atoms of the side chains of the host superphane. The length of the N···H hydrogen bond increases in the following order: HF < HCN < H<sub>2</sub>O < MeOH < NH<sub>3</sub>. The mobility of the trapped molecule and its preferred position inside the superphane cage depend not only on the type of this molecule but also largely on the in/out conformational arrangement of the imino nitrogens in the side chains of the superphane. Their inward-pointing positions allow the formation of strong N···H hydrogen bonds. For this reason, these nitrogens are the preferred sites of interaction. The mobility of the molecules and their residence times on each side of the superphane have been explained by referring to the symmetry and conformation of the given superphane cage. All force field MD simulations have shown that the encapsulated molecule remained inside the superphane cage for 200 ns without any escape event to the outside. Moreover, our simulations based on some endohedral complexes in the water box also showed no exchange event. Thus, the superphanes we study are true carcerand molecules. We attribute this property to the hydrophobic side chains and their pinwheel arrangement, which makes the side walls of the studied superphanes fairly impenetrable to small molecules.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"7925-7937\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01040\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01040","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Behavior of Trapped Molecules in Lantern-Like Carcerand Superphanes.
Superphanes are a group of organic molecules from the cyclophane family. They are characterized by the presence of two parallel benzene rings joined together by six bridges. If these bridges are sufficiently long, the superphane cavity can be large enough to trap small molecules or ions. Using ab initio (time scale of 80 ps) and classical (up to 200 ns) molecular dynamics (MD) methods, we study the behavior of five fundamental molecules (M = H2O, NH3, HF, HCN, MeOH) encapsulated inside the experimentally reported lantern-like superphane and its two derivatives featuring slightly modified side bridges. The main focus is studying the dynamics of hydrogen bonds between the trapped M molecule and the imino nitrogen atoms of the side chains of the host superphane. The length of the N···H hydrogen bond increases in the following order: HF < HCN < H2O < MeOH < NH3. The mobility of the trapped molecule and its preferred position inside the superphane cage depend not only on the type of this molecule but also largely on the in/out conformational arrangement of the imino nitrogens in the side chains of the superphane. Their inward-pointing positions allow the formation of strong N···H hydrogen bonds. For this reason, these nitrogens are the preferred sites of interaction. The mobility of the molecules and their residence times on each side of the superphane have been explained by referring to the symmetry and conformation of the given superphane cage. All force field MD simulations have shown that the encapsulated molecule remained inside the superphane cage for 200 ns without any escape event to the outside. Moreover, our simulations based on some endohedral complexes in the water box also showed no exchange event. Thus, the superphanes we study are true carcerand molecules. We attribute this property to the hydrophobic side chains and their pinwheel arrangement, which makes the side walls of the studied superphanes fairly impenetrable to small molecules.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.