{"title":"稳定接线:评估溶液加工的氧化锌改性银纳米线透明电极的电气性能。","authors":"Jovan N. Lukic and Vuk V. Radmilovic","doi":"10.1039/D4CP03141E","DOIUrl":null,"url":null,"abstract":"<p >Silver nanowires (AgNWs) have gained much attention owing to their optoelectronic and mechanical properties and are therefore potential candidates to tackle intrinsic drawbacks of currently applied transparent electrodes in various (opto)electronic devices. In order for AgNWs to be justifiably considered as viable, it is necessary to address their insufficient stability by coupling them with another constituent into a nanocomposite. For this purpose, ZnO was chosen because of its low cost, solution processability and barrier properties. In this paper, a fully solution processed AgNW/ZnO TE film was investigated in order to understand the effect of ZnO coating on the electrical stability of AgNWs, including the mechanism of degradation during their exposure to high electrical current densities. The nanocomposite transparent electrode was processed with ZnO coatings to determine their effect on its optoelectronic properties and electrical stability, where the ZnO triple coated AgNW demonstrated the best combination of optoelectronic properties and stability at the highest working voltage.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 41","pages":" 26472-26478"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wired for stability: evaluating the electrical performance of a solution-processed zinc oxide-modified silver nanowire transparent electrode†\",\"authors\":\"Jovan N. Lukic and Vuk V. Radmilovic\",\"doi\":\"10.1039/D4CP03141E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silver nanowires (AgNWs) have gained much attention owing to their optoelectronic and mechanical properties and are therefore potential candidates to tackle intrinsic drawbacks of currently applied transparent electrodes in various (opto)electronic devices. In order for AgNWs to be justifiably considered as viable, it is necessary to address their insufficient stability by coupling them with another constituent into a nanocomposite. For this purpose, ZnO was chosen because of its low cost, solution processability and barrier properties. In this paper, a fully solution processed AgNW/ZnO TE film was investigated in order to understand the effect of ZnO coating on the electrical stability of AgNWs, including the mechanism of degradation during their exposure to high electrical current densities. The nanocomposite transparent electrode was processed with ZnO coatings to determine their effect on its optoelectronic properties and electrical stability, where the ZnO triple coated AgNW demonstrated the best combination of optoelectronic properties and stability at the highest working voltage.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 41\",\"pages\":\" 26472-26478\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp03141e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp03141e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wired for stability: evaluating the electrical performance of a solution-processed zinc oxide-modified silver nanowire transparent electrode†
Silver nanowires (AgNWs) have gained much attention owing to their optoelectronic and mechanical properties and are therefore potential candidates to tackle intrinsic drawbacks of currently applied transparent electrodes in various (opto)electronic devices. In order for AgNWs to be justifiably considered as viable, it is necessary to address their insufficient stability by coupling them with another constituent into a nanocomposite. For this purpose, ZnO was chosen because of its low cost, solution processability and barrier properties. In this paper, a fully solution processed AgNW/ZnO TE film was investigated in order to understand the effect of ZnO coating on the electrical stability of AgNWs, including the mechanism of degradation during their exposure to high electrical current densities. The nanocomposite transparent electrode was processed with ZnO coatings to determine their effect on its optoelectronic properties and electrical stability, where the ZnO triple coated AgNW demonstrated the best combination of optoelectronic properties and stability at the highest working voltage.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.