{"title":"新巴西异黄酮通过调节SIRT1改善Aβ25-35诱导小鼠的记忆缺陷和脑损伤","authors":"Fengxiao Hao, Mengnan Zeng, Bing Cao, Xiwen Liang, Kaili Ye, Xinmian Jiao, Weisheng Feng, Xiaoke Zheng","doi":"10.1111/cns.70068","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Alzheimer's disease (AD) is a common chronic neurodegenerative disease in older people, and there is no specific treatment that can stop or reverse its progression. Neobavaisoflavone (NBIF) is a flavonoid that has been shown to have neuroprotective effects, but its role in AD has not been revealed. The present study investigated the role and mechanism of NBIF on Aβ<sub>25-35</sub>-induced brain injury.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this experiment, the AD mouse model was established by injection of Aβ<sub>25-35</sub> peptides (200 μM, icv), and Donepezil (Don, 10 mg/kg/days), NBIF-L (15 mg/kg/days), and NBIF-H (30 mg/kg/days) were administered orally for 4 weeks. Learning memory, hippocampal pathological changes, pathological markers, apoptosis, oxidative stress, inflammation, immune cells were measured in mice. Network pharmacology combined with the GEO database led to the identification of SIRT1, a key target for NBIF intervention in AD, and levels of SIRT1, p-STAT3 and FOXO1 were measured. In addition, the antagonistic activity of SIRT1 transfection silencing against NBIF in Aβ<sub>25-35</sub>-induced in N9 cells and N2a-APP69 cells was investigated to assess whether the effects caused by NBIF were mediated by SIRT1.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The results showed that NBIF ameliorated learning memory and hippocampal neuronal damage, reduced pathological markers, apoptosis, oxidative stress and neuroinflammation, and modulated immune cells. SIRT1 is a key target for NBIF intervention in AD, and NBIF upregulates SIRT1 and reduces the expression levels of p-STAT3 and FOXO1. Furthermore, silencing SIRT1 effectively reduced the protective effect of NBIF on Aβ<sub>25-35</sub>-induced N9 cells and N2a-APP69 cells, which indicated that the protective effect of NBIF on AD is related to SIRT1.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>NBIF ameliorated Aβ<sub>25-35</sub>-induced brain injury by inhibiting apoptosis, oxidative stress, and neuroinflammation, which may be mediated through SIRT1 signaling. These findings provide a rationale for NBIF in the treatment of AD and help facilitate the development of clinical therapeutic agents for AD.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70068","citationCount":"0","resultStr":"{\"title\":\"Neobavaisoflavone Ameliorates Memory Deficits and Brain Damage in Aβ25-35-Induced Mice by Regulating SIRT1\",\"authors\":\"Fengxiao Hao, Mengnan Zeng, Bing Cao, Xiwen Liang, Kaili Ye, Xinmian Jiao, Weisheng Feng, Xiaoke Zheng\",\"doi\":\"10.1111/cns.70068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Alzheimer's disease (AD) is a common chronic neurodegenerative disease in older people, and there is no specific treatment that can stop or reverse its progression. Neobavaisoflavone (NBIF) is a flavonoid that has been shown to have neuroprotective effects, but its role in AD has not been revealed. The present study investigated the role and mechanism of NBIF on Aβ<sub>25-35</sub>-induced brain injury.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this experiment, the AD mouse model was established by injection of Aβ<sub>25-35</sub> peptides (200 μM, icv), and Donepezil (Don, 10 mg/kg/days), NBIF-L (15 mg/kg/days), and NBIF-H (30 mg/kg/days) were administered orally for 4 weeks. Learning memory, hippocampal pathological changes, pathological markers, apoptosis, oxidative stress, inflammation, immune cells were measured in mice. Network pharmacology combined with the GEO database led to the identification of SIRT1, a key target for NBIF intervention in AD, and levels of SIRT1, p-STAT3 and FOXO1 were measured. In addition, the antagonistic activity of SIRT1 transfection silencing against NBIF in Aβ<sub>25-35</sub>-induced in N9 cells and N2a-APP69 cells was investigated to assess whether the effects caused by NBIF were mediated by SIRT1.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The results showed that NBIF ameliorated learning memory and hippocampal neuronal damage, reduced pathological markers, apoptosis, oxidative stress and neuroinflammation, and modulated immune cells. SIRT1 is a key target for NBIF intervention in AD, and NBIF upregulates SIRT1 and reduces the expression levels of p-STAT3 and FOXO1. Furthermore, silencing SIRT1 effectively reduced the protective effect of NBIF on Aβ<sub>25-35</sub>-induced N9 cells and N2a-APP69 cells, which indicated that the protective effect of NBIF on AD is related to SIRT1.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>NBIF ameliorated Aβ<sub>25-35</sub>-induced brain injury by inhibiting apoptosis, oxidative stress, and neuroinflammation, which may be mediated through SIRT1 signaling. These findings provide a rationale for NBIF in the treatment of AD and help facilitate the development of clinical therapeutic agents for AD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.70068\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70068","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neobavaisoflavone Ameliorates Memory Deficits and Brain Damage in Aβ25-35-Induced Mice by Regulating SIRT1
Background
Alzheimer's disease (AD) is a common chronic neurodegenerative disease in older people, and there is no specific treatment that can stop or reverse its progression. Neobavaisoflavone (NBIF) is a flavonoid that has been shown to have neuroprotective effects, but its role in AD has not been revealed. The present study investigated the role and mechanism of NBIF on Aβ25-35-induced brain injury.
Methods
In this experiment, the AD mouse model was established by injection of Aβ25-35 peptides (200 μM, icv), and Donepezil (Don, 10 mg/kg/days), NBIF-L (15 mg/kg/days), and NBIF-H (30 mg/kg/days) were administered orally for 4 weeks. Learning memory, hippocampal pathological changes, pathological markers, apoptosis, oxidative stress, inflammation, immune cells were measured in mice. Network pharmacology combined with the GEO database led to the identification of SIRT1, a key target for NBIF intervention in AD, and levels of SIRT1, p-STAT3 and FOXO1 were measured. In addition, the antagonistic activity of SIRT1 transfection silencing against NBIF in Aβ25-35-induced in N9 cells and N2a-APP69 cells was investigated to assess whether the effects caused by NBIF were mediated by SIRT1.
Results
The results showed that NBIF ameliorated learning memory and hippocampal neuronal damage, reduced pathological markers, apoptosis, oxidative stress and neuroinflammation, and modulated immune cells. SIRT1 is a key target for NBIF intervention in AD, and NBIF upregulates SIRT1 and reduces the expression levels of p-STAT3 and FOXO1. Furthermore, silencing SIRT1 effectively reduced the protective effect of NBIF on Aβ25-35-induced N9 cells and N2a-APP69 cells, which indicated that the protective effect of NBIF on AD is related to SIRT1.
Conclusions
NBIF ameliorated Aβ25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and neuroinflammation, which may be mediated through SIRT1 signaling. These findings provide a rationale for NBIF in the treatment of AD and help facilitate the development of clinical therapeutic agents for AD.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.