Qing Cai, Jean Evans I Codjia, Bart Buyck, Yang-Yang Cui, Martin Ryberg, Nourou S Yorou, Zhu L Yang
{"title":"外生菌根共生的进化和宿主-植物的转换是天南星科(姬松茸属,担子菌纲)多样化的主要驱动力。","authors":"Qing Cai, Jean Evans I Codjia, Bart Buyck, Yang-Yang Cui, Martin Ryberg, Nourou S Yorou, Zhu L Yang","doi":"10.1186/s12915-024-02031-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification.</p><p><strong>Results: </strong>The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae.</p><p><strong>Conclusions: </strong>Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"230"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465788/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota).\",\"authors\":\"Qing Cai, Jean Evans I Codjia, Bart Buyck, Yang-Yang Cui, Martin Ryberg, Nourou S Yorou, Zhu L Yang\",\"doi\":\"10.1186/s12915-024-02031-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification.</p><p><strong>Results: </strong>The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae.</p><p><strong>Conclusions: </strong>Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"22 1\",\"pages\":\"230\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02031-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02031-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota).
Background: Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification.
Results: The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae.
Conclusions: Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.