开发 HepatIA:巴西一家三级教学医院用于肝细胞癌检测人工智能培训的计算机断层扫描注释平台和数据库。

IF 2.2 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Clinics Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI:10.1016/j.clinsp.2024.100512
Bruno Aragão Rocha, Lorena Carneiro Ferreira, Luis Gustavo Rocha Vianna, Ana Claudia Martins Ciconelle, João Martins Cortez Filho, Lucas Salume Lima Nogueira, Maurício Ricardo Moreira da Silva Filho, Claudia da Costa Leite, Cesar Higar Nomura, Giovanni Guido Cerri, Flair José Carrilho, Suzane Kioko Ono
{"title":"开发 HepatIA:巴西一家三级教学医院用于肝细胞癌检测人工智能培训的计算机断层扫描注释平台和数据库。","authors":"Bruno Aragão Rocha, Lorena Carneiro Ferreira, Luis Gustavo Rocha Vianna, Ana Claudia Martins Ciconelle, João Martins Cortez Filho, Lucas Salume Lima Nogueira, Maurício Ricardo Moreira da Silva Filho, Claudia da Costa Leite, Cesar Higar Nomura, Giovanni Guido Cerri, Flair José Carrilho, Suzane Kioko Ono","doi":"10.1016/j.clinsp.2024.100512","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is a prevalent tumor with high mortality rates. Computed tomography (CT) is crucial in the non-invasive diagnosis of HCC. Recent advancements in artificial intelligence (AI) have shown significant potential in medical imaging analysis. However, developing these AI algorithms is hindered by the scarcity of comprehensive, publicly available liver imaging datasets.</p><p><strong>Objectives: </strong>This study aims to detail the tools, data organization, and database structuring used in creating HepatIA, a medical imaging annotation platform and database at a Brazilian tertiary teaching hospital. HepatIA supports liver disease AI research at the institution.</p><p><strong>Material and methods: </strong>The authors collected baseline characteristics and CT scans of 656 patients from 2008 to 2021. The database, designed using PostgreSQL and implemented with Django and Vue.js, includes 692 CT volumes from a four-phase abdominal CT protocol. Radiologists made segmentation annotations using the OHIF medical image viewer, incorporating MONAI Label for pre-annotation segmentation models. The annotation process included detailed descriptions of liver morphology and nodule characteristics.</p><p><strong>Results: </strong>The HepatIA database currently includes healthy individuals and those with liver diseases such as HCC and cirrhosis. The database dashboard facilitates user interaction with intuitive plots and histograms. Key patient demographics include 64% males and an average age of 56.89 years. The database supports various filters for detailed searches, enhancing research capabilities.</p><p><strong>Conclusion: </strong>A comprehensive data structure was successfully created and integrated with the IT systems of a teaching hospital, enabling research on deep learning algorithms applied to abdominal CT scans for investigating hepatic lesions such as HCC.</p>","PeriodicalId":10472,"journal":{"name":"Clinics","volume":"79 ","pages":"100512"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of HepatIA: A computed tomography annotation platform and database for artificial intelligence training in hepatocellular carcinoma detection at a Brazilian tertiary teaching hospital.\",\"authors\":\"Bruno Aragão Rocha, Lorena Carneiro Ferreira, Luis Gustavo Rocha Vianna, Ana Claudia Martins Ciconelle, João Martins Cortez Filho, Lucas Salume Lima Nogueira, Maurício Ricardo Moreira da Silva Filho, Claudia da Costa Leite, Cesar Higar Nomura, Giovanni Guido Cerri, Flair José Carrilho, Suzane Kioko Ono\",\"doi\":\"10.1016/j.clinsp.2024.100512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is a prevalent tumor with high mortality rates. Computed tomography (CT) is crucial in the non-invasive diagnosis of HCC. Recent advancements in artificial intelligence (AI) have shown significant potential in medical imaging analysis. However, developing these AI algorithms is hindered by the scarcity of comprehensive, publicly available liver imaging datasets.</p><p><strong>Objectives: </strong>This study aims to detail the tools, data organization, and database structuring used in creating HepatIA, a medical imaging annotation platform and database at a Brazilian tertiary teaching hospital. HepatIA supports liver disease AI research at the institution.</p><p><strong>Material and methods: </strong>The authors collected baseline characteristics and CT scans of 656 patients from 2008 to 2021. The database, designed using PostgreSQL and implemented with Django and Vue.js, includes 692 CT volumes from a four-phase abdominal CT protocol. Radiologists made segmentation annotations using the OHIF medical image viewer, incorporating MONAI Label for pre-annotation segmentation models. The annotation process included detailed descriptions of liver morphology and nodule characteristics.</p><p><strong>Results: </strong>The HepatIA database currently includes healthy individuals and those with liver diseases such as HCC and cirrhosis. The database dashboard facilitates user interaction with intuitive plots and histograms. Key patient demographics include 64% males and an average age of 56.89 years. The database supports various filters for detailed searches, enhancing research capabilities.</p><p><strong>Conclusion: </strong>A comprehensive data structure was successfully created and integrated with the IT systems of a teaching hospital, enabling research on deep learning algorithms applied to abdominal CT scans for investigating hepatic lesions such as HCC.</p>\",\"PeriodicalId\":10472,\"journal\":{\"name\":\"Clinics\",\"volume\":\"79 \",\"pages\":\"100512\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.clinsp.2024.100512\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinsp.2024.100512","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:肝细胞癌(HCC)是一种死亡率很高的常见肿瘤。计算机断层扫描(CT)是无创诊断 HCC 的关键。人工智能(AI)的最新进展显示出其在医学影像分析方面的巨大潜力。然而,由于缺乏全面、公开的肝脏成像数据集,这些人工智能算法的开发受到了阻碍:本研究旨在详细介绍巴西一家三级教学医院在创建医学影像注释平台和数据库 HepatIA 时所使用的工具、数据组织和数据库结构。HepatIA 支持该医院的肝病 AI 研究:作者收集了 2008 年至 2021 年期间 656 名患者的基线特征和 CT 扫描结果。该数据库使用 PostgreSQL 设计,并用 Django 和 Vue.js 实现,包括来自四期腹部 CT 方案的 692 个 CT 卷。放射科医生使用 OHIF 医学影像查看器进行分割注释,并将 MONAI 标签用于注释前分割模型。注释过程包括对肝脏形态和结节特征的详细描述:HepatIA 数据库目前包括健康人和患有 HCC 和肝硬化等肝病的人。数据库仪表板通过直观的图表和直方图方便用户互动。主要患者人口统计学特征包括 64% 的男性和 56.89 岁的平均年龄。数据库支持各种过滤器进行详细搜索,提高了研究能力:我们成功地创建了一个全面的数据结构,并将其与一家教学医院的 IT 系统集成,从而能够对应用于腹部 CT 扫描的深度学习算法进行研究,以调查 HCC 等肝脏病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of HepatIA: A computed tomography annotation platform and database for artificial intelligence training in hepatocellular carcinoma detection at a Brazilian tertiary teaching hospital.

Background: Hepatocellular carcinoma (HCC) is a prevalent tumor with high mortality rates. Computed tomography (CT) is crucial in the non-invasive diagnosis of HCC. Recent advancements in artificial intelligence (AI) have shown significant potential in medical imaging analysis. However, developing these AI algorithms is hindered by the scarcity of comprehensive, publicly available liver imaging datasets.

Objectives: This study aims to detail the tools, data organization, and database structuring used in creating HepatIA, a medical imaging annotation platform and database at a Brazilian tertiary teaching hospital. HepatIA supports liver disease AI research at the institution.

Material and methods: The authors collected baseline characteristics and CT scans of 656 patients from 2008 to 2021. The database, designed using PostgreSQL and implemented with Django and Vue.js, includes 692 CT volumes from a four-phase abdominal CT protocol. Radiologists made segmentation annotations using the OHIF medical image viewer, incorporating MONAI Label for pre-annotation segmentation models. The annotation process included detailed descriptions of liver morphology and nodule characteristics.

Results: The HepatIA database currently includes healthy individuals and those with liver diseases such as HCC and cirrhosis. The database dashboard facilitates user interaction with intuitive plots and histograms. Key patient demographics include 64% males and an average age of 56.89 years. The database supports various filters for detailed searches, enhancing research capabilities.

Conclusion: A comprehensive data structure was successfully created and integrated with the IT systems of a teaching hospital, enabling research on deep learning algorithms applied to abdominal CT scans for investigating hepatic lesions such as HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinics
Clinics 医学-医学:内科
CiteScore
4.10
自引率
3.70%
发文量
129
审稿时长
52 days
期刊介绍: CLINICS is an electronic journal that publishes peer-reviewed articles in continuous flow, of interest to clinicians and researchers in the medical sciences. CLINICS complies with the policies of funding agencies which request or require deposition of the published articles that they fund into publicly available databases. CLINICS supports the position of the International Committee of Medical Journal Editors (ICMJE) on trial registration.
期刊最新文献
Small fiber neuropathy with dysautonomia and positive GPCR and FGFR-3 antibodies after the first BNT162b2 dose. TRIB3 is a biomarker of poor prognosis in laryngeal squamous cell carcinoma and may affect tumor development through PI3K / AKT / mTOR pathway. Variations of renal Doppler indices during the initial 24-hour predict acute kidney injury in patients with sepsis: A single-center observational case-control clinical study. Difference among frailty assessment tools in predicating postoperative prognosis of elderly patients with mild traumatic brain injury. Evaluation of corneal incision in femtosecond laser-assisted phacoemulsification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1