发现作为 SIRT1 激活剂的 5-(取代苯基)-2-芳基苯并咪唑衍生物:它们的设计、硅学研究、合成和体外评估。

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-10-10 DOI:10.2174/0109298673330534240924104941
Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar, Deepika Saini
{"title":"发现作为 SIRT1 激活剂的 5-(取代苯基)-2-芳基苯并咪唑衍生物:它们的设计、硅学研究、合成和体外评估。","authors":"Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar, Deepika Saini","doi":"10.2174/0109298673330534240924104941","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Silent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(- substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.</p><p><strong>Methods: </strong>The compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.</p><p><strong>Results: </strong>The molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol- 5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski's rule.</p><p><strong>Conclusion: </strong>According to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation.\",\"authors\":\"Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar, Deepika Saini\",\"doi\":\"10.2174/0109298673330534240924104941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Silent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(- substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.</p><p><strong>Methods: </strong>The compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.</p><p><strong>Results: </strong>The molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol- 5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski's rule.</p><p><strong>Conclusion: </strong>According to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673330534240924104941\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673330534240924104941","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:沉默信息调节因子二同源物一(SIRT1)是治疗代谢性疾病的一个新兴靶点。本研究旨在合成新型 5-(-取代苯基)-2-芳基苯并咪唑衍生物,并评估它们对 SIRT1 的激活作用:方法:这些化合物是根据我们以前研究中建立的 QSAR 模型的结果设计的。此外,还分别使用 AutoDock Vina 和 Schrödinger Maestro 11.8.012 版进行了分子对接和动力学研究,以探索设计化合物与 SIRT1 酶活性位点的相互作用。通过 Suzuki-Miyaura 交叉偶联合成了具有良好结合亲和力的化合物,并对其进行了光谱表征。利用荧光筛选试剂盒对这些分子的体外 SIRT1 激活特性进行了评估。根据体外检测结果,建立了结构-活性关系。采用 SwissADME 计算合成分子的药代动力学特征:分子对接研究表明,所有激活剂都有效地对接了催化活性位点。所有化合物都与 Glu230 和 Arg446 等重要氨基酸发生了相互作用。在分子动力学模拟中,化合物 5m 与蛋白质 SIRT1 的均方根偏差(RMSD)保持稳定,即低于 3mm。化合物 5m,即 4-(2-(3,4-二羟基-5-硝基苯基)-1H-苯并[d]咪唑-5-基)苯甲醛,是最有效的化合物,其 EC50 值为 0.006 mM (±0.001),最大激活率为 240.5%。所有合成的化合物都具有可接受的理论 ADME 特征,其药物相似性符合 Lipinski 规则:结论:根据研究结果,合成的化合物可能是 SIRT1 激活剂的可行线索,可用于利用动物模型推进临床前体内研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation.

Aim: Silent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(- substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.

Methods: The compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.

Results: The molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol- 5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski's rule.

Conclusion: According to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Development and Validation of a Diagnostic Model for AKI Based on the Analysis of Ferroptosis-related Genes. Fibroblast Heterogeneity in Hepatocellular Carcinoma and Identification of Prognostic Markers Based on Single-cell Transcriptome Analysis. Advances in Discovery and Design of Anti-influenza Virus Peptides. C-Reactive Protein Biosensor for Diagnosing Infections Caused by Orthopedic Trauma. Stimuli-Responsive Nano/Biomaterials for Smart Drug Delivery in Cardiovascular Diseases: Promises, Challenges and Outlooks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1