Na Wang, Jiali Cui, Ziteng Sun, Fan Chen, Xiaping He
{"title":"基于网络药理学、分子对接和实验验证,探索白桦脂对阿尔茨海默病的保护作用及其分子机制","authors":"Na Wang, Jiali Cui, Ziteng Sun, Fan Chen, Xiaping He","doi":"10.3892/mmr.2024.13356","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disorder that impairs learning and memory, with high rates of mortality. Birch bark has been traditionally used in the treatment of various skin ailments. Betulin (BT) is a key compound of birch bark that exhibits diverse pharmacological benefits and therapeutic potential in AD. However, the therapeutic effects and molecular mechanisms of BT in AD remain unclear. The present study aimed to predict the potential therapeutic targets of BT in the treatment of AD, and to determine the specific underlying molecular mechanisms through network pharmacology analysis and experimental validation. PharmMapper was used to predict the target genes of BT, and four disease databases were searched to screen for AD targets. The intersection targets were identified using the jveen website. Drug‑disease target protein‑protein interaction networks and hub genes were obtained and visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape. The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and AutoDock was used for molecular docking analysis of BT and hub genes. Subsequently, the network‑predicted mechanisms of BT in AD were verified <i>in vitro</i>. A total of 495 BT and 1,386 AD targets were identified, and 120 were identified as potential targets of BT in the treatment of AD. The results of the molecular docking analysis revealed a strong binding affinity between BT and the hub genes. In addition, enrichment analyses of GO and KEGG pathways indicated that the neuroprotective effects of BT mainly involved the 'PI3K‑Akt signaling pathway'. The results of <i>in vitro</i> experiments demonstrated that pretreatment with BT for 2 h may ameliorate formaldehyde (FA)‑induced cytotoxicity and morphological changes in HT22 cells, and decrease FA‑induced Tau hyperphosphorylation and reactive oxygen species levels. Furthermore, the PI3K/AKT signaling pathway was activated and the expression levels of downstream proteins, namely GSK3β, Bcl‑2 and Bax, were modified following pre‑treatment with BT. Overall, the results of network pharmacology and <i>in vitro</i> analyses revealed that BT may reduce FA‑induced AD‑like pathology by modulating the PI3K/AKT signaling pathway, highlighting it as a potential multi‑target drug for the treatment of AD.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529172/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the protective effect and molecular mechanism of betulin in Alzheimer's disease based on network pharmacology, molecular docking and experimental validation.\",\"authors\":\"Na Wang, Jiali Cui, Ziteng Sun, Fan Chen, Xiaping He\",\"doi\":\"10.3892/mmr.2024.13356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a neurodegenerative disorder that impairs learning and memory, with high rates of mortality. Birch bark has been traditionally used in the treatment of various skin ailments. Betulin (BT) is a key compound of birch bark that exhibits diverse pharmacological benefits and therapeutic potential in AD. However, the therapeutic effects and molecular mechanisms of BT in AD remain unclear. The present study aimed to predict the potential therapeutic targets of BT in the treatment of AD, and to determine the specific underlying molecular mechanisms through network pharmacology analysis and experimental validation. PharmMapper was used to predict the target genes of BT, and four disease databases were searched to screen for AD targets. The intersection targets were identified using the jveen website. Drug‑disease target protein‑protein interaction networks and hub genes were obtained and visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape. The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and AutoDock was used for molecular docking analysis of BT and hub genes. Subsequently, the network‑predicted mechanisms of BT in AD were verified <i>in vitro</i>. A total of 495 BT and 1,386 AD targets were identified, and 120 were identified as potential targets of BT in the treatment of AD. The results of the molecular docking analysis revealed a strong binding affinity between BT and the hub genes. In addition, enrichment analyses of GO and KEGG pathways indicated that the neuroprotective effects of BT mainly involved the 'PI3K‑Akt signaling pathway'. The results of <i>in vitro</i> experiments demonstrated that pretreatment with BT for 2 h may ameliorate formaldehyde (FA)‑induced cytotoxicity and morphological changes in HT22 cells, and decrease FA‑induced Tau hyperphosphorylation and reactive oxygen species levels. Furthermore, the PI3K/AKT signaling pathway was activated and the expression levels of downstream proteins, namely GSK3β, Bcl‑2 and Bax, were modified following pre‑treatment with BT. Overall, the results of network pharmacology and <i>in vitro</i> analyses revealed that BT may reduce FA‑induced AD‑like pathology by modulating the PI3K/AKT signaling pathway, highlighting it as a potential multi‑target drug for the treatment of AD.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"30 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529172/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2024.13356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)是一种神经退行性疾病,会损害学习和记忆,死亡率很高。桦树皮历来被用于治疗各种皮肤病。白桦脂素(BT)是桦树皮中的一种主要化合物,它具有多种药理作用和治疗 AD 的潜力。然而,BT 对 AD 的治疗效果和分子机制仍不清楚。本研究旨在预测 BT 治疗 AD 的潜在治疗靶点,并通过网络药理学分析和实验验证确定其具体的潜在分子机制。研究使用PharmMapper预测BT的靶基因,并检索四个疾病数据库筛选AD靶点。利用 jveen 网站确定了交叉靶点。利用检索相互作用基因/蛋白数据库的搜索工具和Cytoscape获得了药物-疾病靶标蛋白-蛋白相互作用网络和枢纽基因,并将其可视化。注释、可视化和综合发现数据库用于基因本体(GO)和京都基因和基因组百科全书(KEGG)富集分析,AutoDock用于BT和枢纽基因的分子对接分析。随后,在体外验证了BT在AD中的网络预测机制。共鉴定出 495 个 BT 靶点和 1,386 个 AD 靶点,其中 120 个靶点被确定为 BT 治疗 AD 的潜在靶点。分子对接分析结果表明,BT与中枢基因之间具有很强的结合亲和力。此外,GO和KEGG通路的富集分析表明,BT的神经保护作用主要涉及 "PI3K-Akt信号通路"。体外实验结果表明,用BT预处理2小时可改善甲醛(FA)诱导的HT22细胞的细胞毒性和形态学变化,并降低FA诱导的Tau高磷酸化和活性氧水平。此外,经 BT 预处理后,PI3K/AKT 信号通路被激活,下游蛋白(即 GSK3β、Bcl-2 和 Bax)的表达水平也发生了变化。总之,网络药理学和体外分析的结果表明,BT可通过调节PI3K/AKT信号通路来减少FA诱导的AD样病理变化,从而成为治疗AD的潜在多靶点药物。
Exploring the protective effect and molecular mechanism of betulin in Alzheimer's disease based on network pharmacology, molecular docking and experimental validation.
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs learning and memory, with high rates of mortality. Birch bark has been traditionally used in the treatment of various skin ailments. Betulin (BT) is a key compound of birch bark that exhibits diverse pharmacological benefits and therapeutic potential in AD. However, the therapeutic effects and molecular mechanisms of BT in AD remain unclear. The present study aimed to predict the potential therapeutic targets of BT in the treatment of AD, and to determine the specific underlying molecular mechanisms through network pharmacology analysis and experimental validation. PharmMapper was used to predict the target genes of BT, and four disease databases were searched to screen for AD targets. The intersection targets were identified using the jveen website. Drug‑disease target protein‑protein interaction networks and hub genes were obtained and visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape. The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and AutoDock was used for molecular docking analysis of BT and hub genes. Subsequently, the network‑predicted mechanisms of BT in AD were verified in vitro. A total of 495 BT and 1,386 AD targets were identified, and 120 were identified as potential targets of BT in the treatment of AD. The results of the molecular docking analysis revealed a strong binding affinity between BT and the hub genes. In addition, enrichment analyses of GO and KEGG pathways indicated that the neuroprotective effects of BT mainly involved the 'PI3K‑Akt signaling pathway'. The results of in vitro experiments demonstrated that pretreatment with BT for 2 h may ameliorate formaldehyde (FA)‑induced cytotoxicity and morphological changes in HT22 cells, and decrease FA‑induced Tau hyperphosphorylation and reactive oxygen species levels. Furthermore, the PI3K/AKT signaling pathway was activated and the expression levels of downstream proteins, namely GSK3β, Bcl‑2 and Bax, were modified following pre‑treatment with BT. Overall, the results of network pharmacology and in vitro analyses revealed that BT may reduce FA‑induced AD‑like pathology by modulating the PI3K/AKT signaling pathway, highlighting it as a potential multi‑target drug for the treatment of AD.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.