化疗抗药性与肿瘤微环境:细胞-细胞通讯的关键作用。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-10-10 DOI:10.1186/s12964-024-01857-7
Bartosz Wilczyński, Alicja Dąbrowska, Julita Kulbacka, Dagmara Baczyńska
{"title":"化疗抗药性与肿瘤微环境:细胞-细胞通讯的关键作用。","authors":"Bartosz Wilczyński, Alicja Dąbrowska, Julita Kulbacka, Dagmara Baczyńska","doi":"10.1186/s12964-024-01857-7","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"486"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication.\",\"authors\":\"Bartosz Wilczyński, Alicja Dąbrowska, Julita Kulbacka, Dagmara Baczyńska\",\"doi\":\"10.1186/s12964-024-01857-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"486\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01857-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01857-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌细胞对抗癌药物的耐药性仍然是现代医学的一大挑战。了解化疗耐药性产生的机制,是开发适当疗法应对化疗耐药性的关键。如今,随着技术的进步,我们越来越关注肿瘤微环境(TME)和细胞间相互作用在这一过程中的作用。我们还知道,肿瘤微环境的重要元素不仅包括肿瘤细胞本身,还包括其他类型的细胞,如间充质干细胞、癌症相关成纤维细胞、基质细胞和巨噬细胞。TME元素之间可以间接(通过细胞因子、趋化因子、生长因子和细胞外囊泡(EVs))或直接(通过间隙连接、配体-受体对、细胞粘附和隧道纳米管)进行交流。这种交流似乎对化疗抗药性的产生至关重要。在这方面,EV 似乎是一种特别有趣的结构。在这些结构中,脂质、蛋白质和核酸可以被运输,作为信号分子与许多生化途径相互作用,从而导致化疗耐药性。此外,负责从癌细胞中清除药物的药物外流泵也可以通过 EVs 运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication.

Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. IL-10 mediates pleural remodeling in systemic lupus erythematosus. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. miR-23b-3p, miR-126-3p and GAS5 delivered by extracellular vesicles inhibit breast cancer xenografts in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1