Murat Horasan , Kari A. Verner , Haisheng Yang , Russell P. Main , Eric A. Nauman
{"title":"在轴向加载的小鼠胫骨模型中,计算得出的骨内膜应变和应变梯度与骨形成增加相关。","authors":"Murat Horasan , Kari A. Verner , Haisheng Yang , Russell P. Main , Eric A. Nauman","doi":"10.1016/j.jmbbm.2024.106761","DOIUrl":null,"url":null,"abstract":"<div><div>Osteoporosis is a common metabolic bone disorder characterized by low bone mass and microstructural degradation of bone tissue due to a derailed bone remodeling process. A deeper understanding of the mechanobiological phenomena that modulate the bone remodeling response to mechanical loading in a healthy bone is crucial to develop treatments. Rodent models have provided invaluable insight into the mechanobiological mechanisms regulating bone adaptation in response to dynamic mechanic stimuli. This study sheds light on these aspects by means of assessing the mechanical environment of the cortical and cancellous tissue to <em>in vivo</em> dynamic compressive loading within the mouse tibia using microCT-based finite element model in combination with diaphyseal strain gauge measures. Additionally, this work describes the relation between the mid-diaphyseal strains and strain gradients from the finite element analysis and bone formation measures from time-lapse <em>in vivo</em> tibial loading with a fluorochrome-derived histomorphometry analysis. The mouse tibial loading model demonstrated that cancellous strains were lower than those in the midshaft cortical bone. Sensitivity analyses demonstrated that the material property of cortical bone was the most significant model parameter. The computationally-modeled strains and strain gradients correlated significantly to the histologically-measured bone formation thickness at the mid-diaphyseal cross-section of the mouse tibia.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106761"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally derived endosteal strain and strain gradients correlate with increased bone formation in an axially loaded murine tibia model\",\"authors\":\"Murat Horasan , Kari A. Verner , Haisheng Yang , Russell P. Main , Eric A. Nauman\",\"doi\":\"10.1016/j.jmbbm.2024.106761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Osteoporosis is a common metabolic bone disorder characterized by low bone mass and microstructural degradation of bone tissue due to a derailed bone remodeling process. A deeper understanding of the mechanobiological phenomena that modulate the bone remodeling response to mechanical loading in a healthy bone is crucial to develop treatments. Rodent models have provided invaluable insight into the mechanobiological mechanisms regulating bone adaptation in response to dynamic mechanic stimuli. This study sheds light on these aspects by means of assessing the mechanical environment of the cortical and cancellous tissue to <em>in vivo</em> dynamic compressive loading within the mouse tibia using microCT-based finite element model in combination with diaphyseal strain gauge measures. Additionally, this work describes the relation between the mid-diaphyseal strains and strain gradients from the finite element analysis and bone formation measures from time-lapse <em>in vivo</em> tibial loading with a fluorochrome-derived histomorphometry analysis. The mouse tibial loading model demonstrated that cancellous strains were lower than those in the midshaft cortical bone. Sensitivity analyses demonstrated that the material property of cortical bone was the most significant model parameter. The computationally-modeled strains and strain gradients correlated significantly to the histologically-measured bone formation thickness at the mid-diaphyseal cross-section of the mouse tibia.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106761\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175161612400393X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612400393X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Computationally derived endosteal strain and strain gradients correlate with increased bone formation in an axially loaded murine tibia model
Osteoporosis is a common metabolic bone disorder characterized by low bone mass and microstructural degradation of bone tissue due to a derailed bone remodeling process. A deeper understanding of the mechanobiological phenomena that modulate the bone remodeling response to mechanical loading in a healthy bone is crucial to develop treatments. Rodent models have provided invaluable insight into the mechanobiological mechanisms regulating bone adaptation in response to dynamic mechanic stimuli. This study sheds light on these aspects by means of assessing the mechanical environment of the cortical and cancellous tissue to in vivo dynamic compressive loading within the mouse tibia using microCT-based finite element model in combination with diaphyseal strain gauge measures. Additionally, this work describes the relation between the mid-diaphyseal strains and strain gradients from the finite element analysis and bone formation measures from time-lapse in vivo tibial loading with a fluorochrome-derived histomorphometry analysis. The mouse tibial loading model demonstrated that cancellous strains were lower than those in the midshaft cortical bone. Sensitivity analyses demonstrated that the material property of cortical bone was the most significant model parameter. The computationally-modeled strains and strain gradients correlated significantly to the histologically-measured bone formation thickness at the mid-diaphyseal cross-section of the mouse tibia.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.