Wan Wang, Ximiao Wang, Jiandong Yao, Huanjun Chen, Guowei Yang
{"title":"脉冲激光沉积掺杂 Ge 的 BiTe 纳米薄膜及其在室温长波红外光探测中的应用(先进光学材料 28/2024)","authors":"Wan Wang, Ximiao Wang, Jiandong Yao, Huanjun Chen, Guowei Yang","doi":"10.1002/adom.202470087","DOIUrl":null,"url":null,"abstract":"<p><b>Pulsed-Laser Deposition of Ge-Doped BiTe Nanofilms for Photodetection</b></p><p>Pulsed-laser deposition is developed for the large-area synthesis of Ge-doped BiTe nanofilms, which are successfully exploited for room-temperature high-speed long-wave infrared photodetection and optical communications. For more information on these achievements, see article number 2401937 by Jiandong Yao, Huanjun Chen, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 28","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470087","citationCount":"0","resultStr":"{\"title\":\"Pulsed-Laser Deposition of Ge-Doped BiTe Nanofilms and Their Application in Room-Temperature Long-Wave Infrared Photodetection (Advanced Optical Materials 28/2024)\",\"authors\":\"Wan Wang, Ximiao Wang, Jiandong Yao, Huanjun Chen, Guowei Yang\",\"doi\":\"10.1002/adom.202470087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Pulsed-Laser Deposition of Ge-Doped BiTe Nanofilms for Photodetection</b></p><p>Pulsed-laser deposition is developed for the large-area synthesis of Ge-doped BiTe nanofilms, which are successfully exploited for room-temperature high-speed long-wave infrared photodetection and optical communications. For more information on these achievements, see article number 2401937 by Jiandong Yao, Huanjun Chen, and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 28\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470087\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470087","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
用于光探测的脉冲激光沉积掺杂 Ge 的 BiTe 纳米薄膜开发了脉冲激光沉积技术,用于大面积合成掺杂 Ge 的 BiTe 纳米薄膜,并成功地将其用于室温高速长波红外光探测和光通信。有关这些成果的更多信息,请参阅姚建东、陈焕军及合作者的 2401937 号文章。
Pulsed-Laser Deposition of Ge-Doped BiTe Nanofilms and Their Application in Room-Temperature Long-Wave Infrared Photodetection (Advanced Optical Materials 28/2024)
Pulsed-Laser Deposition of Ge-Doped BiTe Nanofilms for Photodetection
Pulsed-laser deposition is developed for the large-area synthesis of Ge-doped BiTe nanofilms, which are successfully exploited for room-temperature high-speed long-wave infrared photodetection and optical communications. For more information on these achievements, see article number 2401937 by Jiandong Yao, Huanjun Chen, and co-workers.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.