Paula V. López, Anabella Mocciaro, María F. Hernández, Diego Richard, Nicolás M. Rendtorff
{"title":"针状莫来石和氧化锆多孔陶瓷复合材料的微观结构和力学性能","authors":"Paula V. López, Anabella Mocciaro, María F. Hernández, Diego Richard, Nicolás M. Rendtorff","doi":"10.1111/ijac.14839","DOIUrl":null,"url":null,"abstract":"<p>Porous mullite ceramics have good properties for high-temperature applications, but porosity gives place to ceramics with low mechanical strength, which restricts the service life in their potential applications. Therefore, performing modifications at the microscale to increase the mechanical strength has become a current challenge to expand its application fields. This work describes the properties of a porous mullite–zirconia composite produced by ceramic processing, using industrial kaolin and stabilized zirconia as raw materials. The growth of mullite needle-like grains to reinforce the ceramic was promoted by the addition of a molybdenum oxide precursor. The effect of zirconia on the composite was analyzed through an experimental multi-technique approach and considering a pure mullite sample, identically processed, as a reference. The novel composite has a porosity of about 50%, and presents a homogeneous microstructure, with interlocked mullite needle-like grains and dispersed rounded zirconia grains. This morphology restricts the mullite tendency to shrink during sintering, giving the material a higher stiffness. In particular, the presence of zirconia in the composite improves both the flexural strength and the apparent Young modulus of the material (about 20% and up to 600%, respectively). These results encourage further investigations to establish this composite for different technological applications.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4081-4090"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of a porous ceramic composite with needle-like mullite and zirconia\",\"authors\":\"Paula V. López, Anabella Mocciaro, María F. Hernández, Diego Richard, Nicolás M. Rendtorff\",\"doi\":\"10.1111/ijac.14839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous mullite ceramics have good properties for high-temperature applications, but porosity gives place to ceramics with low mechanical strength, which restricts the service life in their potential applications. Therefore, performing modifications at the microscale to increase the mechanical strength has become a current challenge to expand its application fields. This work describes the properties of a porous mullite–zirconia composite produced by ceramic processing, using industrial kaolin and stabilized zirconia as raw materials. The growth of mullite needle-like grains to reinforce the ceramic was promoted by the addition of a molybdenum oxide precursor. The effect of zirconia on the composite was analyzed through an experimental multi-technique approach and considering a pure mullite sample, identically processed, as a reference. The novel composite has a porosity of about 50%, and presents a homogeneous microstructure, with interlocked mullite needle-like grains and dispersed rounded zirconia grains. This morphology restricts the mullite tendency to shrink during sintering, giving the material a higher stiffness. In particular, the presence of zirconia in the composite improves both the flexural strength and the apparent Young modulus of the material (about 20% and up to 600%, respectively). These results encourage further investigations to establish this composite for different technological applications.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"21 6\",\"pages\":\"4081-4090\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14839\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14839","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Microstructure and mechanical properties of a porous ceramic composite with needle-like mullite and zirconia
Porous mullite ceramics have good properties for high-temperature applications, but porosity gives place to ceramics with low mechanical strength, which restricts the service life in their potential applications. Therefore, performing modifications at the microscale to increase the mechanical strength has become a current challenge to expand its application fields. This work describes the properties of a porous mullite–zirconia composite produced by ceramic processing, using industrial kaolin and stabilized zirconia as raw materials. The growth of mullite needle-like grains to reinforce the ceramic was promoted by the addition of a molybdenum oxide precursor. The effect of zirconia on the composite was analyzed through an experimental multi-technique approach and considering a pure mullite sample, identically processed, as a reference. The novel composite has a porosity of about 50%, and presents a homogeneous microstructure, with interlocked mullite needle-like grains and dispersed rounded zirconia grains. This morphology restricts the mullite tendency to shrink during sintering, giving the material a higher stiffness. In particular, the presence of zirconia in the composite improves both the flexural strength and the apparent Young modulus of the material (about 20% and up to 600%, respectively). These results encourage further investigations to establish this composite for different technological applications.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;