He Zhao, Sen Wang, Gaobin Liu, Biao Wang, Shuang Zhao, Qi Yuan, Kuoming Song
{"title":"一步法 CCTO-Mn-Co 系列黑色 Al2O3 陶瓷的低温烧结性能研究","authors":"He Zhao, Sen Wang, Gaobin Liu, Biao Wang, Shuang Zhao, Qi Yuan, Kuoming Song","doi":"10.1111/ijac.14819","DOIUrl":null,"url":null,"abstract":"<p>To confer light-blocking properties upon the Al2O3 encapsulation material, this study employed a one-step method using α-Al2O3 as the main raw material to synthesize CaCu3Ti4O12(CCTO)–MnO2–Co2O3 series black Al2O3 ceramics. The research investigated their coloring effect, sintering behavior, dielectric, and mechanical properties. The results indicate that the CCTO–MnO2–Co2O3 series colorants successfully dyed the Al2O3 ceramics black, while their introduction resulted in the formation of various spinel-type compounds and facilitated the sintering of Al2O3 ceramics. The sintering mechanism and performance effects of black Al2O3 ceramics were thoroughly investigated, revealing that with an increase in the colorant content, all properties of the samples improved. When the colorant content reached 15.0 wt.%, the coloring effect reached its optimum, with a relative density of 96.7%, a dielectric constant of 12.5, a dielectric loss of .0081, a flexural strength of 314.4 MPa, and a Vickers hardness of 1254.5 Hv.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3918-3925"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature sintering performance study of CCTO–Mn–Co series black Al2O3 ceramics by the one-step method\",\"authors\":\"He Zhao, Sen Wang, Gaobin Liu, Biao Wang, Shuang Zhao, Qi Yuan, Kuoming Song\",\"doi\":\"10.1111/ijac.14819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To confer light-blocking properties upon the Al2O3 encapsulation material, this study employed a one-step method using α-Al2O3 as the main raw material to synthesize CaCu3Ti4O12(CCTO)–MnO2–Co2O3 series black Al2O3 ceramics. The research investigated their coloring effect, sintering behavior, dielectric, and mechanical properties. The results indicate that the CCTO–MnO2–Co2O3 series colorants successfully dyed the Al2O3 ceramics black, while their introduction resulted in the formation of various spinel-type compounds and facilitated the sintering of Al2O3 ceramics. The sintering mechanism and performance effects of black Al2O3 ceramics were thoroughly investigated, revealing that with an increase in the colorant content, all properties of the samples improved. When the colorant content reached 15.0 wt.%, the coloring effect reached its optimum, with a relative density of 96.7%, a dielectric constant of 12.5, a dielectric loss of .0081, a flexural strength of 314.4 MPa, and a Vickers hardness of 1254.5 Hv.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"21 6\",\"pages\":\"3918-3925\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14819\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14819","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Low-temperature sintering performance study of CCTO–Mn–Co series black Al2O3 ceramics by the one-step method
To confer light-blocking properties upon the Al2O3 encapsulation material, this study employed a one-step method using α-Al2O3 as the main raw material to synthesize CaCu3Ti4O12(CCTO)–MnO2–Co2O3 series black Al2O3 ceramics. The research investigated their coloring effect, sintering behavior, dielectric, and mechanical properties. The results indicate that the CCTO–MnO2–Co2O3 series colorants successfully dyed the Al2O3 ceramics black, while their introduction resulted in the formation of various spinel-type compounds and facilitated the sintering of Al2O3 ceramics. The sintering mechanism and performance effects of black Al2O3 ceramics were thoroughly investigated, revealing that with an increase in the colorant content, all properties of the samples improved. When the colorant content reached 15.0 wt.%, the coloring effect reached its optimum, with a relative density of 96.7%, a dielectric constant of 12.5, a dielectric loss of .0081, a flexural strength of 314.4 MPa, and a Vickers hardness of 1254.5 Hv.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;