利用哨兵-5 TROPOMI 和人工智能监测地球大气层:量化火山二氧化硫排放

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-10-11 DOI:10.1016/j.rse.2024.114463
Claudia Corradino , Paul Jouve , Alessandro La Spina , Ciro Del Negro
{"title":"利用哨兵-5 TROPOMI 和人工智能监测地球大气层:量化火山二氧化硫排放","authors":"Claudia Corradino ,&nbsp;Paul Jouve ,&nbsp;Alessandro La Spina ,&nbsp;Ciro Del Negro","doi":"10.1016/j.rse.2024.114463","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying changes in volcanic unrest and tracking eruptive activity are fundamental for volcanic surveillance and monitoring. Magmatic gases, particularly sulphur dioxide (SO<sub>2</sub>), play a crucial role in influencing eruptive styles, making the monitoring of SO<sub>2</sub> emissions essential. Recent advancements in satellite remote sensing technology, including higher spatial resolution and sensitivity, have enhanced our ability to detect SO<sub>2</sub> emissions from volcanoes worldwide. However, traditional fixed-threshold algorithms struggle to automatically distinguish volcanic SO<sub>2</sub> emissions from non-volcanic sources. Additionally, accurately quantifying SO<sub>2</sub> emissions is challenging due to their dependence on plume height, particularly when reaching high altitudes. To address these challenges, we developed an Artificial Intelligence (AI) algorithm that detects and quantifies volcanic SO<sub>2</sub> emissions in near real-time. Our approach utilizes a Random Forest (RF) model, a supervised Machine Learning (ML) algorithm, to identify volcanic SO<sub>2</sub> emissions and integrates Cloud Top Height (CTH) data to enhance the accuracy of SO<sub>2</sub> mass quantification during intense volcanic eruptions. This AI algorithm, fully implemented in Google Earth Engine (GEE), leverages data from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor (S5P) satellite to automatically retrieve daily volcanic SO<sub>2</sub> plumes and CTH. We validated the model's performance against the Radius classifier, a state-of-the-art tool, and generalized its application across various volcanoes (Etna, Villarrica, Fuego, Pacaya, and Cumbre Vieja) with differing degassing activities, SO<sub>2</sub> emission rates, and plume geometries. Our findings demonstrate that the proposed AI approach effectively identifies and quantifies SO<sub>2</sub> plumes emitted by different volcanoes, enabling the investigation of SO<sub>2</sub> emission time series that reflect magma dynamics.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114463"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Earth's atmosphere with Sentinel-5 TROPOMI and Artificial Intelligence: Quantifying volcanic SO2 emissions\",\"authors\":\"Claudia Corradino ,&nbsp;Paul Jouve ,&nbsp;Alessandro La Spina ,&nbsp;Ciro Del Negro\",\"doi\":\"10.1016/j.rse.2024.114463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying changes in volcanic unrest and tracking eruptive activity are fundamental for volcanic surveillance and monitoring. Magmatic gases, particularly sulphur dioxide (SO<sub>2</sub>), play a crucial role in influencing eruptive styles, making the monitoring of SO<sub>2</sub> emissions essential. Recent advancements in satellite remote sensing technology, including higher spatial resolution and sensitivity, have enhanced our ability to detect SO<sub>2</sub> emissions from volcanoes worldwide. However, traditional fixed-threshold algorithms struggle to automatically distinguish volcanic SO<sub>2</sub> emissions from non-volcanic sources. Additionally, accurately quantifying SO<sub>2</sub> emissions is challenging due to their dependence on plume height, particularly when reaching high altitudes. To address these challenges, we developed an Artificial Intelligence (AI) algorithm that detects and quantifies volcanic SO<sub>2</sub> emissions in near real-time. Our approach utilizes a Random Forest (RF) model, a supervised Machine Learning (ML) algorithm, to identify volcanic SO<sub>2</sub> emissions and integrates Cloud Top Height (CTH) data to enhance the accuracy of SO<sub>2</sub> mass quantification during intense volcanic eruptions. This AI algorithm, fully implemented in Google Earth Engine (GEE), leverages data from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor (S5P) satellite to automatically retrieve daily volcanic SO<sub>2</sub> plumes and CTH. We validated the model's performance against the Radius classifier, a state-of-the-art tool, and generalized its application across various volcanoes (Etna, Villarrica, Fuego, Pacaya, and Cumbre Vieja) with differing degassing activities, SO<sub>2</sub> emission rates, and plume geometries. Our findings demonstrate that the proposed AI approach effectively identifies and quantifies SO<sub>2</sub> plumes emitted by different volcanoes, enabling the investigation of SO<sub>2</sub> emission time series that reflect magma dynamics.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"315 \",\"pages\":\"Article 114463\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724004899\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004899","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

识别火山动荡的变化和跟踪喷发活动是火山监视和监测的基础。岩浆气体,特别是二氧化硫(SO2),在影响火山喷发方式方面起着至关重要的作用,因此对二氧化硫排放的监测至关重要。卫星遥感技术的最新进展,包括更高的空间分辨率和灵敏度,增强了我们探测全球火山二氧化硫排放的能力。然而,传统的固定阈值算法难以自动区分火山和非火山源的二氧化硫排放。此外,由于二氧化硫排放与烟羽高度有关,特别是在达到高海拔地区时,准确量化二氧化硫排放具有挑战性。为了应对这些挑战,我们开发了一种人工智能(AI)算法,可以近乎实时地检测和量化火山二氧化硫排放。我们的方法利用随机森林(RF)模型(一种有监督的机器学习(ML)算法)来识别火山二氧化硫排放,并整合云顶高度(CTH)数据,以提高强烈火山爆发期间二氧化硫质量量化的准确性。该人工智能算法完全由谷歌地球引擎(GEE)实现,利用哥白尼哨兵-5前兆(S5P)卫星上的TROPOspheric Monitoring Instrument(TROPOMI)数据,自动检索每日火山二氧化硫羽流和云顶高度。我们用最先进的工具--Radius 分类器验证了该模型的性能,并将其应用于具有不同脱气活动、二氧化硫排放率和羽流几何形状的各种火山(埃特纳火山、比利亚里卡火山、富埃戈火山、帕卡亚火山和维埃哈火山)。我们的研究结果表明,所提出的人工智能方法能够有效识别和量化不同火山排放的二氧化硫羽流,从而能够研究反映岩浆动态的二氧化硫排放时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring Earth's atmosphere with Sentinel-5 TROPOMI and Artificial Intelligence: Quantifying volcanic SO2 emissions
Identifying changes in volcanic unrest and tracking eruptive activity are fundamental for volcanic surveillance and monitoring. Magmatic gases, particularly sulphur dioxide (SO2), play a crucial role in influencing eruptive styles, making the monitoring of SO2 emissions essential. Recent advancements in satellite remote sensing technology, including higher spatial resolution and sensitivity, have enhanced our ability to detect SO2 emissions from volcanoes worldwide. However, traditional fixed-threshold algorithms struggle to automatically distinguish volcanic SO2 emissions from non-volcanic sources. Additionally, accurately quantifying SO2 emissions is challenging due to their dependence on plume height, particularly when reaching high altitudes. To address these challenges, we developed an Artificial Intelligence (AI) algorithm that detects and quantifies volcanic SO2 emissions in near real-time. Our approach utilizes a Random Forest (RF) model, a supervised Machine Learning (ML) algorithm, to identify volcanic SO2 emissions and integrates Cloud Top Height (CTH) data to enhance the accuracy of SO2 mass quantification during intense volcanic eruptions. This AI algorithm, fully implemented in Google Earth Engine (GEE), leverages data from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor (S5P) satellite to automatically retrieve daily volcanic SO2 plumes and CTH. We validated the model's performance against the Radius classifier, a state-of-the-art tool, and generalized its application across various volcanoes (Etna, Villarrica, Fuego, Pacaya, and Cumbre Vieja) with differing degassing activities, SO2 emission rates, and plume geometries. Our findings demonstrate that the proposed AI approach effectively identifies and quantifies SO2 plumes emitted by different volcanoes, enabling the investigation of SO2 emission time series that reflect magma dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Two-decade surface ozone (O3) pollution in China: Enhanced fine-scale estimations and environmental health implications Assessing lead fraction derived from passive microwave images and improving estimates at pixel-wise level Estimating anthropogenic CO2 emissions from China's Yangtze River Delta using OCO-2 observations and WRF-Chem simulations A dual-branch network for crop-type mapping of scattered small agricultural fields in time series remote sensing images From theory to hydrological practice: Leveraging CYGNSS data over seven years for advanced soil moisture monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1