卫星波束跳变调度以避免干扰

Huimin Deng;Kai Ying;Daquan Feng;Lin Gui;Yuanzhi He;Xiang-Gen Xia
{"title":"卫星波束跳变调度以避免干扰","authors":"Huimin Deng;Kai Ying;Daquan Feng;Lin Gui;Yuanzhi He;Xiang-Gen Xia","doi":"10.1109/JSAC.2024.3459083","DOIUrl":null,"url":null,"abstract":"The deployment of low earth orbit (LEO) satellites megaconstellations presents a promising way for achieving global coverage and service, attributed to their comparatively low round-trip latency and launch costs. However, this surge in LEO satellite launches exacerbates the scarcity of the limited spectrum resources. Spectrum sharing between satellite constellations and terrestrial networks and beam hopping (BH) technology emerge as viable strategies to mitigate this spectrum shortage. To enhance spectrum efficiency and avoid serious inter-system interference, we investigate the beam hopping scheduling of satellites for interference avoidance. The beam hopping scheduling of the integrated satellite-terrestrial wireless networks system is formulated as throughput-driven beam hopping (TDBH) problem and satisfaction-rate-driven beam hopping (SDBH) problem, respectively. In particular, we decompose the TDBH problem into two sub-problems by relaxation, and a genetic algorithm (GA) is introduced to handle the SDBH problem. The impact of channel conditions and traffic load intensity on the satellite system throughput is analyzed in TDBH simulation. As for SDBH optimization problem, the simulation results show that the proposed GA algorithm improves the average traffic satisfaction rate by 16.96% at least, compared with other benchmarks and suits to scenarios with different traffic demands and fading channel conditions.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3647-3658"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713888","citationCount":"0","resultStr":"{\"title\":\"Satellites Beam Hopping Scheduling for Interference Avoidance\",\"authors\":\"Huimin Deng;Kai Ying;Daquan Feng;Lin Gui;Yuanzhi He;Xiang-Gen Xia\",\"doi\":\"10.1109/JSAC.2024.3459083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deployment of low earth orbit (LEO) satellites megaconstellations presents a promising way for achieving global coverage and service, attributed to their comparatively low round-trip latency and launch costs. However, this surge in LEO satellite launches exacerbates the scarcity of the limited spectrum resources. Spectrum sharing between satellite constellations and terrestrial networks and beam hopping (BH) technology emerge as viable strategies to mitigate this spectrum shortage. To enhance spectrum efficiency and avoid serious inter-system interference, we investigate the beam hopping scheduling of satellites for interference avoidance. The beam hopping scheduling of the integrated satellite-terrestrial wireless networks system is formulated as throughput-driven beam hopping (TDBH) problem and satisfaction-rate-driven beam hopping (SDBH) problem, respectively. In particular, we decompose the TDBH problem into two sub-problems by relaxation, and a genetic algorithm (GA) is introduced to handle the SDBH problem. The impact of channel conditions and traffic load intensity on the satellite system throughput is analyzed in TDBH simulation. As for SDBH optimization problem, the simulation results show that the proposed GA algorithm improves the average traffic satisfaction rate by 16.96% at least, compared with other benchmarks and suits to scenarios with different traffic demands and fading channel conditions.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"42 12\",\"pages\":\"3647-3658\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713888\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713888/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713888/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellites Beam Hopping Scheduling for Interference Avoidance
The deployment of low earth orbit (LEO) satellites megaconstellations presents a promising way for achieving global coverage and service, attributed to their comparatively low round-trip latency and launch costs. However, this surge in LEO satellite launches exacerbates the scarcity of the limited spectrum resources. Spectrum sharing between satellite constellations and terrestrial networks and beam hopping (BH) technology emerge as viable strategies to mitigate this spectrum shortage. To enhance spectrum efficiency and avoid serious inter-system interference, we investigate the beam hopping scheduling of satellites for interference avoidance. The beam hopping scheduling of the integrated satellite-terrestrial wireless networks system is formulated as throughput-driven beam hopping (TDBH) problem and satisfaction-rate-driven beam hopping (SDBH) problem, respectively. In particular, we decompose the TDBH problem into two sub-problems by relaxation, and a genetic algorithm (GA) is introduced to handle the SDBH problem. The impact of channel conditions and traffic load intensity on the satellite system throughput is analyzed in TDBH simulation. As for SDBH optimization problem, the simulation results show that the proposed GA algorithm improves the average traffic satisfaction rate by 16.96% at least, compared with other benchmarks and suits to scenarios with different traffic demands and fading channel conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1