扩展热激活延迟荧光 (TADF) 光催化剂的斯特恩-沃尔默方程

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-11 DOI:10.1021/acs.jpclett.4c02609
Bart Limburg
{"title":"扩展热激活延迟荧光 (TADF) 光催化剂的斯特恩-沃尔默方程","authors":"Bart Limburg","doi":"10.1021/acs.jpclett.4c02609","DOIUrl":null,"url":null,"abstract":"Fluorescence quenching experiments are essential mechanistic tools in photoredox catalysis, allowing one to elucidate the first step in the catalytic cycle that occurs after photon absorption. Thermally activated delayed fluorescence (TADF) photocatalysts, however, yield nonlinear Stern–Volmer plots, thus requiring an adjustment to this widely used method to determine the efficiency of excited state quenching. Here, we derive an extension of the Stern–Volmer equation for TADF fluorophores that considers quenching from both the singlet and triplet excited states and experimentally verify it with fluorescence quenching experiments using the commonly employed TADF-photocatalyst 4CzIPN, and multiple-resonance TADF-photocatalyst QAO with three different quenchers in four solvents. The experimental data are perfectly described by this new equation, which in addition to the Stern–Volmer quenching constants allows for the determination of the product of intersystem and reverse intersystem crossing quantum yields, a quantity that is independent of the quencher.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of the Stern–Volmer Equation for Thermally Activated Delayed Fluorescence (TADF) Photocatalysts\",\"authors\":\"Bart Limburg\",\"doi\":\"10.1021/acs.jpclett.4c02609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence quenching experiments are essential mechanistic tools in photoredox catalysis, allowing one to elucidate the first step in the catalytic cycle that occurs after photon absorption. Thermally activated delayed fluorescence (TADF) photocatalysts, however, yield nonlinear Stern–Volmer plots, thus requiring an adjustment to this widely used method to determine the efficiency of excited state quenching. Here, we derive an extension of the Stern–Volmer equation for TADF fluorophores that considers quenching from both the singlet and triplet excited states and experimentally verify it with fluorescence quenching experiments using the commonly employed TADF-photocatalyst 4CzIPN, and multiple-resonance TADF-photocatalyst QAO with three different quenchers in four solvents. The experimental data are perfectly described by this new equation, which in addition to the Stern–Volmer quenching constants allows for the determination of the product of intersystem and reverse intersystem crossing quantum yields, a quantity that is independent of the quencher.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02609\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02609","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

荧光淬灭实验是光氧化催化过程中必不可少的机理工具,可用于阐明光子吸收后催化循环的第一步。然而,热激活延迟荧光(TADF)光催化剂会产生非线性 Stern-Volmer 图,因此需要调整这种广泛使用的方法,以确定激发态淬灭的效率。在此,我们推导了 TADF 荧光体的 Stern-Volmer 公式的扩展,该公式考虑了单线态和三线态激发态的淬灭,并使用常用的 TADF 光催化剂 4CzIPN 和多重共振 TADF 光催化剂 QAO 与三种不同的淬灭剂在四种溶剂中进行荧光淬灭实验进行了验证。这个新方程完美地描述了实验数据,除了斯特恩-沃尔默淬火常数外,它还能确定系统间和反向系统间交叉量子产率的乘积,这个量子产率与淬火剂无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Extension of the Stern–Volmer Equation for Thermally Activated Delayed Fluorescence (TADF) Photocatalysts
Fluorescence quenching experiments are essential mechanistic tools in photoredox catalysis, allowing one to elucidate the first step in the catalytic cycle that occurs after photon absorption. Thermally activated delayed fluorescence (TADF) photocatalysts, however, yield nonlinear Stern–Volmer plots, thus requiring an adjustment to this widely used method to determine the efficiency of excited state quenching. Here, we derive an extension of the Stern–Volmer equation for TADF fluorophores that considers quenching from both the singlet and triplet excited states and experimentally verify it with fluorescence quenching experiments using the commonly employed TADF-photocatalyst 4CzIPN, and multiple-resonance TADF-photocatalyst QAO with three different quenchers in four solvents. The experimental data are perfectly described by this new equation, which in addition to the Stern–Volmer quenching constants allows for the determination of the product of intersystem and reverse intersystem crossing quantum yields, a quantity that is independent of the quencher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Carrier Dynamics and Recombination Pathways in Ag-In-Zn-S Quantum Dots. Catalytic Impedance Spectroscopy: Concept and Application on CO2 Methanation. Electric Field-Induced Enhanced Raman Spectroscopy Sensor and Photocatalysis with Thermoelectric-Plasmonic Metal Nanocomposites. Prediction of Threonine-Tyrosine Kinase Receptor-Ligand Unbinding Kinetics with Multiscale Milestoning and Metadynamics. Strong Dependence of Point Defect Properties in Metal Halide Perovskites on Description of van der Waals Interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1