具有可调双空位的 ZnIn2S4 纳米片用于高效的无牺牲剂 H2O2 光合作用

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-10-11 DOI:10.1039/D4QI02030H
Chen Zhang, Gao Xu, Qifeng Liang, Li Liang, Zebo Fang, Rong Wu, Shunhang Wei, Lei Wang and Xiaoxiang Xu
{"title":"具有可调双空位的 ZnIn2S4 纳米片用于高效的无牺牲剂 H2O2 光合作用","authors":"Chen Zhang, Gao Xu, Qifeng Liang, Li Liang, Zebo Fang, Rong Wu, Shunhang Wei, Lei Wang and Xiaoxiang Xu","doi":"10.1039/D4QI02030H","DOIUrl":null,"url":null,"abstract":"<p >ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> nanosheets with tunable concentration of dual vacancies (<em>i.e.</em> Zn vacancy and S vacancy) were prepared and used for photocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O<small><sub>2</sub></small> adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O<small><sub>2</sub></small>. These intriguing properties endow ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> with excellent performance for sacrificial agent-free H<small><sub>2</sub></small>O<small><sub>2</sub></small> photosynthesis <em>via</em> a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H<small><sub>2</sub></small>O<small><sub>2</sub></small> can be produced over ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> with dual vacancies compared to pristine ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H<small><sub>2</sub></small>O<small><sub>2</sub></small> decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> through defect engineering and brings new mechanistic insights into the role of these defects.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 23","pages":" 8383-8391"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis†\",\"authors\":\"Chen Zhang, Gao Xu, Qifeng Liang, Li Liang, Zebo Fang, Rong Wu, Shunhang Wei, Lei Wang and Xiaoxiang Xu\",\"doi\":\"10.1039/D4QI02030H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> nanosheets with tunable concentration of dual vacancies (<em>i.e.</em> Zn vacancy and S vacancy) were prepared and used for photocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O<small><sub>2</sub></small> adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O<small><sub>2</sub></small>. These intriguing properties endow ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> with excellent performance for sacrificial agent-free H<small><sub>2</sub></small>O<small><sub>2</sub></small> photosynthesis <em>via</em> a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H<small><sub>2</sub></small>O<small><sub>2</sub></small> can be produced over ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> with dual vacancies compared to pristine ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H<small><sub>2</sub></small>O<small><sub>2</sub></small> decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> through defect engineering and brings new mechanistic insights into the role of these defects.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 8383-8391\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02030h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02030h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

制备了具有可调双空位(即 Zn 空位和 S 空位)浓度的 ZnIn2S4 纳米片,并将其用于光催化 H2O2 生产。引入双空位可有效促进激子解离,促进 O2 吸附,并降低吸附的 O2 随后活化和质子化的自由能。在 AM 1.5 和可见光辐照下,ZnIn2S4 通过两步单电子氧还原反应途径,实现了无牺牲剂的 H2O2 光合作用,这些令人感兴趣的特性证明了 ZnIn2S4 的卓越性能。与没有空位的原始 ZnIn2S4 相比,具有双空位的 ZnIn2S4 几乎可以产生双倍量的 H2O2。在 420 ± 20 纳米波长下,相应的 SCC 效率和 AQY 分别达到约 0.031% 和 0.34%。此外,由于亲水性增强,丰富的双空位抑制了 H2O2 的分解。这项工作为通过缺陷工程改善 ZnIn2S4 的光催化性能提供了一种新策略,并为这些缺陷的作用带来了新的机理认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis†

ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O2. These intriguing properties endow ZnIn2S4 with excellent performance for sacrificial agent-free H2O2 photosynthesis via a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H2O2 can be produced over ZnIn2S4 with dual vacancies compared to pristine ZnIn2S4 without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H2O2 decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn2S4 through defect engineering and brings new mechanistic insights into the role of these defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Integrating Multiple Emission Centers for Photoluminescence Regulation in Copper-Antimony/Bismuth Halides Enhancing White Light-Emitting Diode Performance with Ultra-Wide Spectrum ZnS:Mn-CDs@SiO2 Dual Core@Shell Composite Correction: Coordination tuning of Ni/Fe complex-based electrocatalysts for enhanced oxygen evolution Rapid room-temperature H2S detection based on Bi2S3/CuO heterostructures: the synergy of increased surface-adsorbed oxygen and heterojunction effect Critical assessment of exsolution process in Cu-doped SrTiO3 by a combined spectroscopic approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1