Ankang Liu, Xiaohong Liu, Yuanhao Wei, Xiqiao Xiang, Yi Chen, Ziwei Zheng, Changde Xu, Shaoling Yang, Kun Zhao
{"title":"血清脂质和载脂蛋白对心血管形态-功能表型因果效应的新认识","authors":"Ankang Liu, Xiaohong Liu, Yuanhao Wei, Xiqiao Xiang, Yi Chen, Ziwei Zheng, Changde Xu, Shaoling Yang, Kun Zhao","doi":"10.1007/s12012-024-09930-w","DOIUrl":null,"url":null,"abstract":"<p><p>Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1364-1379"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes.\",\"authors\":\"Ankang Liu, Xiaohong Liu, Yuanhao Wei, Xiqiao Xiang, Yi Chen, Ziwei Zheng, Changde Xu, Shaoling Yang, Kun Zhao\",\"doi\":\"10.1007/s12012-024-09930-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.</p>\",\"PeriodicalId\":9570,\"journal\":{\"name\":\"Cardiovascular Toxicology\",\"volume\":\" \",\"pages\":\"1364-1379\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Toxicology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12012-024-09930-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12012-024-09930-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes.
Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.
期刊介绍:
Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.