Fangyi Han , Xingdi Fan , Minxuan Hu , Jing Wen , Junrao Wang , Dan Zhang , Shuyang Wang , Yanqing Ding , Yaping Ye , Hongli Jiao
{"title":"Nup210通过调节核浆转运促进结直肠癌的进展。","authors":"Fangyi Han , Xingdi Fan , Minxuan Hu , Jing Wen , Junrao Wang , Dan Zhang , Shuyang Wang , Yanqing Ding , Yaping Ye , Hongli Jiao","doi":"10.1016/j.labinv.2024.102149","DOIUrl":null,"url":null,"abstract":"<div><div>The nuclear pore complex (NPC) regulates nucleoplasmic transport, transcription, and genomic integrity in eukaryotic cells. However, little is known about how NPC works in cancer. In this study, we investigated the role of the nuclear pore protein 210 (Nucleoporin 210, Nup210) in colorectal cancer (CRC). Bioinformatics analysis revealed that the expression of Nup210 was increased in CRC and was associated with poor patient prognosis, but it was not a statistically significant independent prognostic factor. Moreover, knockdown of Nup210 in CRC cells inhibited the proliferation, invasion, and metastasis of CRC cells in vivo and in vitro. Additionally, nuclear size and nuclear plasma material transport capacity decreased along with the number and density of NPCs on the surface of CRC cells when Nup210 expression was inhibited. Furthermore, Nup210 required nuclear localization sequences (NLS) to localize to the nuclear membrane surface and interact with importin-α/β, which in turn affected the transit of nuclear plasma material. Importazole, a small molecule inhibitor of importin, along with therapy that targets the Nup210 protein is anticipated to be a novel strategy for CRC treatment. Their combination may be able to more effectively lower CRC tumor load. In conclusion, Nup210 modulates cellular nucleoplasmic transport capability and cell surface NPC density via NLS, thus promoting CRC progression. This discovery validates the molecular function of NPC in the development of CRC and provides a theoretical foundation for NPC-regulated nuclear import targeting as a therapeutic strategy for CRC.</div></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"104 11","pages":"Article 102149"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nup210 Promotes Colorectal Cancer Progression by Regulating Nuclear Plasma Transport\",\"authors\":\"Fangyi Han , Xingdi Fan , Minxuan Hu , Jing Wen , Junrao Wang , Dan Zhang , Shuyang Wang , Yanqing Ding , Yaping Ye , Hongli Jiao\",\"doi\":\"10.1016/j.labinv.2024.102149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nuclear pore complex (NPC) regulates nucleoplasmic transport, transcription, and genomic integrity in eukaryotic cells. However, little is known about how NPC works in cancer. In this study, we investigated the role of the nuclear pore protein 210 (Nucleoporin 210, Nup210) in colorectal cancer (CRC). Bioinformatics analysis revealed that the expression of Nup210 was increased in CRC and was associated with poor patient prognosis, but it was not a statistically significant independent prognostic factor. Moreover, knockdown of Nup210 in CRC cells inhibited the proliferation, invasion, and metastasis of CRC cells in vivo and in vitro. Additionally, nuclear size and nuclear plasma material transport capacity decreased along with the number and density of NPCs on the surface of CRC cells when Nup210 expression was inhibited. Furthermore, Nup210 required nuclear localization sequences (NLS) to localize to the nuclear membrane surface and interact with importin-α/β, which in turn affected the transit of nuclear plasma material. Importazole, a small molecule inhibitor of importin, along with therapy that targets the Nup210 protein is anticipated to be a novel strategy for CRC treatment. Their combination may be able to more effectively lower CRC tumor load. In conclusion, Nup210 modulates cellular nucleoplasmic transport capability and cell surface NPC density via NLS, thus promoting CRC progression. This discovery validates the molecular function of NPC in the development of CRC and provides a theoretical foundation for NPC-regulated nuclear import targeting as a therapeutic strategy for CRC.</div></div>\",\"PeriodicalId\":17930,\"journal\":{\"name\":\"Laboratory Investigation\",\"volume\":\"104 11\",\"pages\":\"Article 102149\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0023683724018270\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023683724018270","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Nup210 Promotes Colorectal Cancer Progression by Regulating Nuclear Plasma Transport
The nuclear pore complex (NPC) regulates nucleoplasmic transport, transcription, and genomic integrity in eukaryotic cells. However, little is known about how NPC works in cancer. In this study, we investigated the role of the nuclear pore protein 210 (Nucleoporin 210, Nup210) in colorectal cancer (CRC). Bioinformatics analysis revealed that the expression of Nup210 was increased in CRC and was associated with poor patient prognosis, but it was not a statistically significant independent prognostic factor. Moreover, knockdown of Nup210 in CRC cells inhibited the proliferation, invasion, and metastasis of CRC cells in vivo and in vitro. Additionally, nuclear size and nuclear plasma material transport capacity decreased along with the number and density of NPCs on the surface of CRC cells when Nup210 expression was inhibited. Furthermore, Nup210 required nuclear localization sequences (NLS) to localize to the nuclear membrane surface and interact with importin-α/β, which in turn affected the transit of nuclear plasma material. Importazole, a small molecule inhibitor of importin, along with therapy that targets the Nup210 protein is anticipated to be a novel strategy for CRC treatment. Their combination may be able to more effectively lower CRC tumor load. In conclusion, Nup210 modulates cellular nucleoplasmic transport capability and cell surface NPC density via NLS, thus promoting CRC progression. This discovery validates the molecular function of NPC in the development of CRC and provides a theoretical foundation for NPC-regulated nuclear import targeting as a therapeutic strategy for CRC.
期刊介绍:
Laboratory Investigation is an international journal owned by the United States and Canadian Academy of Pathology. Laboratory Investigation offers prompt publication of high-quality original research in all biomedical disciplines relating to the understanding of human disease and the application of new methods to the diagnosis of disease. Both human and experimental studies are welcome.