Rodrigo Romero, Tinyi Chu, Tania J González Robles, Perianne Smith, Yubin Xie, Harmanpreet Kaur, Sara Yoder, Huiyong Zhao, Chenyi Mao, Wenfei Kang, Maria V Pulina, Kayla E Lawrence, Anuradha Gopalan, Samir Zaidi, Kwangmin Yoo, Jungmin Choi, Ning Fan, Olivia Gerstner, Wouter R Karthaus, Elisa DeStanchina, Kelly V Ruggles, Peter M K Westcott, Ronan Chaligné, Dana Pe'er, Charles L Sawyers
{"title":"前列腺癌的神经内分泌转变是动态的,依赖于 ASCL1。","authors":"Rodrigo Romero, Tinyi Chu, Tania J González Robles, Perianne Smith, Yubin Xie, Harmanpreet Kaur, Sara Yoder, Huiyong Zhao, Chenyi Mao, Wenfei Kang, Maria V Pulina, Kayla E Lawrence, Anuradha Gopalan, Samir Zaidi, Kwangmin Yoo, Jungmin Choi, Ning Fan, Olivia Gerstner, Wouter R Karthaus, Elisa DeStanchina, Kelly V Ruggles, Peter M K Westcott, Ronan Chaligné, Dana Pe'er, Charles L Sawyers","doi":"10.1038/s43018-024-00838-6","DOIUrl":null,"url":null,"abstract":"<p><p>Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1<sup>-/-</sup>; Trp53<sup>-/-</sup>; cMyc<sup>+</sup> or Pten<sup>-/-</sup>; Trp53<sup>-/-</sup>; cMyc<sup>+</sup>) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1<sup>+</sup> neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1<sup>+</sup> cells arise from KRT8<sup>+</sup> luminal cells, progressing into transcriptionally heterogeneous ASCL1<sup>+</sup>;KRT8<sup>-</sup> NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1.\",\"authors\":\"Rodrigo Romero, Tinyi Chu, Tania J González Robles, Perianne Smith, Yubin Xie, Harmanpreet Kaur, Sara Yoder, Huiyong Zhao, Chenyi Mao, Wenfei Kang, Maria V Pulina, Kayla E Lawrence, Anuradha Gopalan, Samir Zaidi, Kwangmin Yoo, Jungmin Choi, Ning Fan, Olivia Gerstner, Wouter R Karthaus, Elisa DeStanchina, Kelly V Ruggles, Peter M K Westcott, Ronan Chaligné, Dana Pe'er, Charles L Sawyers\",\"doi\":\"10.1038/s43018-024-00838-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1<sup>-/-</sup>; Trp53<sup>-/-</sup>; cMyc<sup>+</sup> or Pten<sup>-/-</sup>; Trp53<sup>-/-</sup>; cMyc<sup>+</sup>) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1<sup>+</sup> neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1<sup>+</sup> cells arise from KRT8<sup>+</sup> luminal cells, progressing into transcriptionally heterogeneous ASCL1<sup>+</sup>;KRT8<sup>-</sup> NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":23.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-024-00838-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-024-00838-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1.
Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1+ neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1+ cells arise from KRT8+ luminal cells, progressing into transcriptionally heterogeneous ASCL1+;KRT8- NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.