{"title":"香芹酚对吸入百草枯引起的行为改变、大脑氧化和全身炎症的抑制作用。","authors":"Reyhaneh Khosravi , Sima Beigoli , Sepideh Behrouz , Sabiheh Amirahmadi , Parisa Sarbaz , Mahmoud Hosseini , Hadi Sarir , Mohammad Hossein Boskabady","doi":"10.1016/j.neuro.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m<sup>3</sup> in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 184-195"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inhibitory influence of carvacrol on behavioral modifications, brain oxidation, and general inflammation triggered by paraquat exposure through inhalation\",\"authors\":\"Reyhaneh Khosravi , Sima Beigoli , Sepideh Behrouz , Sabiheh Amirahmadi , Parisa Sarbaz , Mahmoud Hosseini , Hadi Sarir , Mohammad Hossein Boskabady\",\"doi\":\"10.1016/j.neuro.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m<sup>3</sup> in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.</div></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"105 \",\"pages\":\"Pages 184-195\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24001219\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24001219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The inhibitory influence of carvacrol on behavioral modifications, brain oxidation, and general inflammation triggered by paraquat exposure through inhalation
The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m3 in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.