Jerry Achar , James W. Firman , Chantelle Tran , Daniella Kim , Mark T.D. Cronin , Gunilla Öberg
{"title":"化学毒性 QSAR 预测中的隐式和显式不确定性分析:神经毒性案例研究。","authors":"Jerry Achar , James W. Firman , Chantelle Tran , Daniella Kim , Mark T.D. Cronin , Gunilla Öberg","doi":"10.1016/j.yrtph.2024.105716","DOIUrl":null,"url":null,"abstract":"<div><div>Although uncertainties expressed in texts within QSAR studies can guide quantitative uncertainty estimations, they are often overlooked during uncertainty analysis. Using neurotoxicity as an example, this study developed a method to support analysis of implicitly and explicitly expressed uncertainties in QSAR modeling studies. Text content analysis was employed to identify implicit and explicit uncertainty indicators, whereafter uncertainties within the indicator-containing sentences were identified and systematically categorized according to 20 uncertainty sources. Our results show that implicit uncertainty was more frequent within most uncertainty sources (13/20), while explicit uncertainty was more frequent in only three sources, indicating that uncertainty is predominantly expressed implicitly in the field. The most highly cited sources included Mechanistic plausibility, Model relevance and Model performance, suggesting they constitute sources of most concern. The fact that other sources like Data balance were not mentioned, although it is recognized in the broader QSAR literature as an area of concern, demonstrates that the output from the type of analysis conducted here must be interpreted in the context of the broader QSAR literature before conclusions are drawn. Overall, the method established here can be applied in other QSAR modeling contexts and ultimately guide efforts targeted towards addressing the identified uncertainty sources.</div></div>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":"154 ","pages":"Article 105716"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of implicit and explicit uncertainties in QSAR prediction of chemical toxicity: A case study of neurotoxicity\",\"authors\":\"Jerry Achar , James W. Firman , Chantelle Tran , Daniella Kim , Mark T.D. Cronin , Gunilla Öberg\",\"doi\":\"10.1016/j.yrtph.2024.105716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although uncertainties expressed in texts within QSAR studies can guide quantitative uncertainty estimations, they are often overlooked during uncertainty analysis. Using neurotoxicity as an example, this study developed a method to support analysis of implicitly and explicitly expressed uncertainties in QSAR modeling studies. Text content analysis was employed to identify implicit and explicit uncertainty indicators, whereafter uncertainties within the indicator-containing sentences were identified and systematically categorized according to 20 uncertainty sources. Our results show that implicit uncertainty was more frequent within most uncertainty sources (13/20), while explicit uncertainty was more frequent in only three sources, indicating that uncertainty is predominantly expressed implicitly in the field. The most highly cited sources included Mechanistic plausibility, Model relevance and Model performance, suggesting they constitute sources of most concern. The fact that other sources like Data balance were not mentioned, although it is recognized in the broader QSAR literature as an area of concern, demonstrates that the output from the type of analysis conducted here must be interpreted in the context of the broader QSAR literature before conclusions are drawn. Overall, the method established here can be applied in other QSAR modeling contexts and ultimately guide efforts targeted towards addressing the identified uncertainty sources.</div></div>\",\"PeriodicalId\":20852,\"journal\":{\"name\":\"Regulatory Toxicology and Pharmacology\",\"volume\":\"154 \",\"pages\":\"Article 105716\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulatory Toxicology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273230024001570\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273230024001570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Analysis of implicit and explicit uncertainties in QSAR prediction of chemical toxicity: A case study of neurotoxicity
Although uncertainties expressed in texts within QSAR studies can guide quantitative uncertainty estimations, they are often overlooked during uncertainty analysis. Using neurotoxicity as an example, this study developed a method to support analysis of implicitly and explicitly expressed uncertainties in QSAR modeling studies. Text content analysis was employed to identify implicit and explicit uncertainty indicators, whereafter uncertainties within the indicator-containing sentences were identified and systematically categorized according to 20 uncertainty sources. Our results show that implicit uncertainty was more frequent within most uncertainty sources (13/20), while explicit uncertainty was more frequent in only three sources, indicating that uncertainty is predominantly expressed implicitly in the field. The most highly cited sources included Mechanistic plausibility, Model relevance and Model performance, suggesting they constitute sources of most concern. The fact that other sources like Data balance were not mentioned, although it is recognized in the broader QSAR literature as an area of concern, demonstrates that the output from the type of analysis conducted here must be interpreted in the context of the broader QSAR literature before conclusions are drawn. Overall, the method established here can be applied in other QSAR modeling contexts and ultimately guide efforts targeted towards addressing the identified uncertainty sources.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)