{"title":"通过深度学习有效检测异常扩散。","authors":"Adrian Pacheco-Pozo, Diego Krapf","doi":"10.1038/s43588-024-00705-5","DOIUrl":null,"url":null,"abstract":"A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"731-732"},"PeriodicalIF":12.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectively detecting anomalous diffusion via deep learning\",\"authors\":\"Adrian Pacheco-Pozo, Diego Krapf\",\"doi\":\"10.1038/s43588-024-00705-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 10\",\"pages\":\"731-732\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00705-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00705-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Effectively detecting anomalous diffusion via deep learning
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.