{"title":"仿生肢体的未来:尚未开发的信号处理、控制和无线连接的协同作用","authors":"Federico Chiariotti;Pranav Mamidanna;Suraj Suman;Čedomir Stefanović;Dario Farina;Petar Popovski;Strahinja Došen","doi":"10.1109/MSP.2024.3401403","DOIUrl":null,"url":null,"abstract":"The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"58-75"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Future of Bionic Limbs: The untapped synergy of signal processing, control, and wireless connectivity\",\"authors\":\"Federico Chiariotti;Pranav Mamidanna;Suraj Suman;Čedomir Stefanović;Dario Farina;Petar Popovski;Strahinja Došen\",\"doi\":\"10.1109/MSP.2024.3401403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 4\",\"pages\":\"58-75\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714503/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714503/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Future of Bionic Limbs: The untapped synergy of signal processing, control, and wireless connectivity
The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.