仿生肢体的未来:尚未开发的信号处理、控制和无线连接的协同作用

IF 9.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Magazine Pub Date : 2024-10-11 DOI:10.1109/MSP.2024.3401403
Federico Chiariotti;Pranav Mamidanna;Suraj Suman;Čedomir Stefanović;Dario Farina;Petar Popovski;Strahinja Došen
{"title":"仿生肢体的未来:尚未开发的信号处理、控制和无线连接的协同作用","authors":"Federico Chiariotti;Pranav Mamidanna;Suraj Suman;Čedomir Stefanović;Dario Farina;Petar Popovski;Strahinja Došen","doi":"10.1109/MSP.2024.3401403","DOIUrl":null,"url":null,"abstract":"The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"58-75"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Future of Bionic Limbs: The untapped synergy of signal processing, control, and wireless connectivity\",\"authors\":\"Federico Chiariotti;Pranav Mamidanna;Suraj Suman;Čedomir Stefanović;Dario Farina;Petar Popovski;Strahinja Došen\",\"doi\":\"10.1109/MSP.2024.3401403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 4\",\"pages\":\"58-75\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714503/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714503/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人类肢体的灵活性和灵巧性依赖于大脑和脊髓感觉运动网络对大量信号的处理,并将其提炼为支配指令和动作的刺激。因此,机器人肢体或外骨骼等辅助设备的使用在很大程度上依赖于对大量异构信号的处理,以模仿自然动作。本文对基于机电一体化技术的仿生肢体控制的三种范式进行了全景式概述。其中两种范式已在文献中得到证实,而本文所倡导的第三种范式则是一种新兴的方法,它得益于连接和计算领域的最新发展。在第一种范式中,仿生肢体依靠传统的控制方式,直接与人类感觉运动系统重新连接,这需要很大的信号处理带宽。第二种范式基于半自主肢体,具有情境感知处理能力和一定的决策能力。随着无线连接和云/边缘处理技术的发展,本文将介绍第三种互联肢体范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Future of Bionic Limbs: The untapped synergy of signal processing, control, and wireless connectivity
The flexibility and dexterity of human limbs rely on the processing of a vast quantity of signals within the sensory-motor networks in the brain and spinal cord, distilled into stimuli that govern the commands and movements. Hence, the use of assistive devices, such as robotic limbs or exoskeletons, is critically dependent on the processing of a large number of heterogeneous signals to mimic natural movements. This article provides a panoramic overview of the three paradigms for the control of bionic limbs based on mechatronic technology. Two of them have already been established in the literature, while the third one, advocated by this article, is an emerging approach, enabled by the latest developments in connectivity and computation. In the first paradigm, the bionic limbs rely on conventional control and are directly reconnected to the human sensory-motor system, which requires a large signal processing bandwidth. The second paradigm is based on semiautonomous limbs, endowed with context-aware processing and certain decision capability. Following the advances in wireless connectivity and cloud/edge processing, this article introduces a third paradigm of connected limbs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Magazine
IEEE Signal Processing Magazine 工程技术-工程:电子与电气
CiteScore
27.20
自引率
0.70%
发文量
123
审稿时长
6-12 weeks
期刊介绍: EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.
期刊最新文献
Front Cover Table of Contents Masthead Special Issue: Artificial Intelligence for Education: A Signal Processing Perspective The Future of Bionic Limbs: The untapped synergy of signal processing, control, and wireless connectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1