{"title":"STPAS:基于时空过滤的精确航空喷洒感知与分析系统","authors":"Jaehwi Seol;Changjo Kim;Eunji Ju;Hyoung Il Son","doi":"10.1109/ACCESS.2024.3473538","DOIUrl":null,"url":null,"abstract":"This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"145997-146008"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704678","citationCount":"0","resultStr":"{\"title\":\"STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying\",\"authors\":\"Jaehwi Seol;Changjo Kim;Eunji Ju;Hyoung Il Son\",\"doi\":\"10.1109/ACCESS.2024.3473538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"145997-146008\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704678\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704678/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704678/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying
This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.