基于脑机接口的生成设计框架:基于人为因素和形式生成交互机制的多领域应用实证探索

Zhe Guo, Zihuan Zhang, Zao Li, Yi Hu, Yuandi Qian, Nengming Cheng, Philip F. Yuan
{"title":"基于脑机接口的生成设计框架:基于人为因素和形式生成交互机制的多领域应用实证探索","authors":"Zhe Guo,&nbsp;Zihuan Zhang,&nbsp;Zao Li,&nbsp;Yi Hu,&nbsp;Yuandi Qian,&nbsp;Nengming Cheng,&nbsp;Philip F. Yuan","doi":"10.1007/s44223-024-00047-2","DOIUrl":null,"url":null,"abstract":"<div><p>Human experience in an architectural space is defined as the state of mind that is reflected on their physiological, emotional, and cognitive statuses. Ergonomic data, as an objective manifestation of quantifiable signals generated by the human body during specific spatial perception processes, serves as a vital foundation for spatial evaluation and guidance for optimization. Electroencephalogram (EEG) signals, as quantifiable sensory indicators directly arising from the interaction between individuals and external stimuli, hold substantial potential as a data-driven force and as a means of optimization assessment in the study of generative design. Although existing research has effectively established a unidirectional relationship between EEG and spatial-environment assessment, there is still a notable deficiency in addressing the creation of a two-way, mutually informative feedback mechanism. This study investigates the applicability of EEG signals as a data-driven basis for generative design across universal methods. It delves into various scales and scenarios of digital design, from the microscopic to the macroscopic, encompassing planar and volumetric visual elements, the design of architectural spatial environmental characteristics, and urban space design grounded in human perceptual sightlines. The research examines the viability and appropriateness of an interactive generative design method based on form generation, predicated on human-factor physiological data exemplified by EEG signals. This paper initially conducts a methodological and tool-based examination of current research in ergonomics-driven design and the use of EEG for design assessment, thereby discussing the objective feasibility of employing EEG in interactive generative design. Subsequently, the study establishes an integrated data flow system encompassing multiple hardware and software components to form a comprehensive workflow. Following this setup, empirical studies based on this method are conducted at different scales of application, yielding corresponding form-generative outcomes. Finally, this paper substantiates the rationality and feasibility of this framework in multi environment design domains.</p></div>","PeriodicalId":72270,"journal":{"name":"Architectural intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44223-024-00047-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain-computer interface based generative design framework: an empirical multi-domain application exploration based on human-factors and form-generation interactive mechanisms\",\"authors\":\"Zhe Guo,&nbsp;Zihuan Zhang,&nbsp;Zao Li,&nbsp;Yi Hu,&nbsp;Yuandi Qian,&nbsp;Nengming Cheng,&nbsp;Philip F. Yuan\",\"doi\":\"10.1007/s44223-024-00047-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human experience in an architectural space is defined as the state of mind that is reflected on their physiological, emotional, and cognitive statuses. Ergonomic data, as an objective manifestation of quantifiable signals generated by the human body during specific spatial perception processes, serves as a vital foundation for spatial evaluation and guidance for optimization. Electroencephalogram (EEG) signals, as quantifiable sensory indicators directly arising from the interaction between individuals and external stimuli, hold substantial potential as a data-driven force and as a means of optimization assessment in the study of generative design. Although existing research has effectively established a unidirectional relationship between EEG and spatial-environment assessment, there is still a notable deficiency in addressing the creation of a two-way, mutually informative feedback mechanism. This study investigates the applicability of EEG signals as a data-driven basis for generative design across universal methods. It delves into various scales and scenarios of digital design, from the microscopic to the macroscopic, encompassing planar and volumetric visual elements, the design of architectural spatial environmental characteristics, and urban space design grounded in human perceptual sightlines. The research examines the viability and appropriateness of an interactive generative design method based on form generation, predicated on human-factor physiological data exemplified by EEG signals. This paper initially conducts a methodological and tool-based examination of current research in ergonomics-driven design and the use of EEG for design assessment, thereby discussing the objective feasibility of employing EEG in interactive generative design. Subsequently, the study establishes an integrated data flow system encompassing multiple hardware and software components to form a comprehensive workflow. Following this setup, empirical studies based on this method are conducted at different scales of application, yielding corresponding form-generative outcomes. Finally, this paper substantiates the rationality and feasibility of this framework in multi environment design domains.</p></div>\",\"PeriodicalId\":72270,\"journal\":{\"name\":\"Architectural intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44223-024-00047-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44223-024-00047-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44223-024-00047-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人在建筑空间中的体验被定义为反映其生理、情感和认知状态的心理状态。人体工程学数据是人体在特定空间感知过程中产生的可量化信号的客观表现,是空间评估和优化指导的重要基础。脑电图(EEG)信号作为可量化的感官指标,直接产生于个体与外部刺激的相互作用,在生成设计研究中作为一种数据驱动力和优化评估手段,具有巨大的潜力。尽管现有研究已经有效地建立了脑电图与空间环境评估之间的单向关系,但在建立双向、互为信息的反馈机制方面仍存在明显不足。本研究调查了脑电信号作为通用方法生成设计的数据驱动基础的适用性。它深入研究了数字设计的各种规模和场景,从微观到宏观,包括平面和体积视觉元素、建筑空间环境特征设计以及以人类感知视线为基础的城市空间设计。本研究探讨了基于形式生成的交互式生成设计方法的可行性和适宜性,该方法以脑电信号体现的人体因素生理数据为前提。本文首先从方法论和工具的角度对当前人体工程学驱动设计的研究和脑电图在设计评估中的应用进行了探讨,从而讨论了在交互式生成设计中使用脑电图的客观可行性。随后,该研究建立了一个综合数据流系统,包括多个硬件和软件组件,形成一个全面的工作流程。在此基础上,对该方法进行了不同规模的实证研究,并取得了相应的形式生成结果。最后,本文证实了该框架在多环境设计领域的合理性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain-computer interface based generative design framework: an empirical multi-domain application exploration based on human-factors and form-generation interactive mechanisms

Human experience in an architectural space is defined as the state of mind that is reflected on their physiological, emotional, and cognitive statuses. Ergonomic data, as an objective manifestation of quantifiable signals generated by the human body during specific spatial perception processes, serves as a vital foundation for spatial evaluation and guidance for optimization. Electroencephalogram (EEG) signals, as quantifiable sensory indicators directly arising from the interaction between individuals and external stimuli, hold substantial potential as a data-driven force and as a means of optimization assessment in the study of generative design. Although existing research has effectively established a unidirectional relationship between EEG and spatial-environment assessment, there is still a notable deficiency in addressing the creation of a two-way, mutually informative feedback mechanism. This study investigates the applicability of EEG signals as a data-driven basis for generative design across universal methods. It delves into various scales and scenarios of digital design, from the microscopic to the macroscopic, encompassing planar and volumetric visual elements, the design of architectural spatial environmental characteristics, and urban space design grounded in human perceptual sightlines. The research examines the viability and appropriateness of an interactive generative design method based on form generation, predicated on human-factor physiological data exemplified by EEG signals. This paper initially conducts a methodological and tool-based examination of current research in ergonomics-driven design and the use of EEG for design assessment, thereby discussing the objective feasibility of employing EEG in interactive generative design. Subsequently, the study establishes an integrated data flow system encompassing multiple hardware and software components to form a comprehensive workflow. Following this setup, empirical studies based on this method are conducted at different scales of application, yielding corresponding form-generative outcomes. Finally, this paper substantiates the rationality and feasibility of this framework in multi environment design domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review on the mathematical models of thermostatically controlled load The PreDI matrix-a common terminology for offsite construction: definition, verification, and demonstration in environmental impact studies Making the Hypar Up pavilion: (in)efficiencies of upcycling surplus timber products Phygital intelligence Emerging technologies in urban design pedagogy: augmented reality applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1