Zijing Li
(, ), Jinlin Zhang
(, ), Mengyue Lu
(, ), Wanchao Chi
(, ), Chong Zhang
(, ), Shenghao Zhang
(, ), Yuzhen Liu
(, ), Chunbiao Gan
(, )
{"title":"连续外部干扰下双足机器人行走的自适应反馈补偿控制方法","authors":"Zijing Li \n (, ), Jinlin Zhang \n (, ), Mengyue Lu \n (, ), Wanchao Chi \n (, ), Chong Zhang \n (, ), Shenghao Zhang \n (, ), Yuzhen Liu \n (, ), Chunbiao Gan \n (, )","doi":"10.1007/s10409-024-24007-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the past few decades, people have been trying to address the issue of walking instability in bipedal robots in uncertain environments. However, most control methods currently have still failed to achieve robust walking of bipedal robots under uncertain disturbances. Existing research mostly focuses on motion control methods for robots on uneven terrain and under sudden impact forces, with little consideration for the problem of continuous and intense external force disturbances in uncertain environments. In response to this issue, a disturbance-robust control method based on adaptive feedback compensation is proposed. First, based on the Lagrangian method, the dynamic model of a bipedal robot under different types of external force disturbances was established. Subsequently, through dynamic analysis, it was observed that classical control methods based on hybrid zero dynamics failed to consider the continuous and significant external force disturbances in uncertain environments. Therefore, an adaptive feedback compensation controller was designed, and an adaptive parameter adjustment optimization algorithm was proposed based on walking constraints to achieve stable walking of bipedal robots under different external force disturbances. Finally, in numerical simulation experiments, comparative analysis revealed that using only a controller based on hybrid zero dynamics was insufficient to converge the motion of a planar five-link bipedal robot subjected to periodic forces or bounded noise disturbances to a stable state. In contrast, in the adaptive feedback compensation control method, the use of an adaptive parameter adjustment optimization algorithm to generate time-varying control parameters successfully achieved stable walking of the robot under these disturbances. This indicates the effectiveness of the adaptive parameter adjustment algorithm and the robustness of the adaptive feedback compensation control method.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"40 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive feedback compensation control method for bipedal robot walking under continuous external disturbances\",\"authors\":\"Zijing Li \\n (, ), Jinlin Zhang \\n (, ), Mengyue Lu \\n (, ), Wanchao Chi \\n (, ), Chong Zhang \\n (, ), Shenghao Zhang \\n (, ), Yuzhen Liu \\n (, ), Chunbiao Gan \\n (, )\",\"doi\":\"10.1007/s10409-024-24007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past few decades, people have been trying to address the issue of walking instability in bipedal robots in uncertain environments. However, most control methods currently have still failed to achieve robust walking of bipedal robots under uncertain disturbances. Existing research mostly focuses on motion control methods for robots on uneven terrain and under sudden impact forces, with little consideration for the problem of continuous and intense external force disturbances in uncertain environments. In response to this issue, a disturbance-robust control method based on adaptive feedback compensation is proposed. First, based on the Lagrangian method, the dynamic model of a bipedal robot under different types of external force disturbances was established. Subsequently, through dynamic analysis, it was observed that classical control methods based on hybrid zero dynamics failed to consider the continuous and significant external force disturbances in uncertain environments. Therefore, an adaptive feedback compensation controller was designed, and an adaptive parameter adjustment optimization algorithm was proposed based on walking constraints to achieve stable walking of bipedal robots under different external force disturbances. Finally, in numerical simulation experiments, comparative analysis revealed that using only a controller based on hybrid zero dynamics was insufficient to converge the motion of a planar five-link bipedal robot subjected to periodic forces or bounded noise disturbances to a stable state. In contrast, in the adaptive feedback compensation control method, the use of an adaptive parameter adjustment optimization algorithm to generate time-varying control parameters successfully achieved stable walking of the robot under these disturbances. This indicates the effectiveness of the adaptive parameter adjustment algorithm and the robustness of the adaptive feedback compensation control method.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"40 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24007-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24007-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Adaptive feedback compensation control method for bipedal robot walking under continuous external disturbances
In the past few decades, people have been trying to address the issue of walking instability in bipedal robots in uncertain environments. However, most control methods currently have still failed to achieve robust walking of bipedal robots under uncertain disturbances. Existing research mostly focuses on motion control methods for robots on uneven terrain and under sudden impact forces, with little consideration for the problem of continuous and intense external force disturbances in uncertain environments. In response to this issue, a disturbance-robust control method based on adaptive feedback compensation is proposed. First, based on the Lagrangian method, the dynamic model of a bipedal robot under different types of external force disturbances was established. Subsequently, through dynamic analysis, it was observed that classical control methods based on hybrid zero dynamics failed to consider the continuous and significant external force disturbances in uncertain environments. Therefore, an adaptive feedback compensation controller was designed, and an adaptive parameter adjustment optimization algorithm was proposed based on walking constraints to achieve stable walking of bipedal robots under different external force disturbances. Finally, in numerical simulation experiments, comparative analysis revealed that using only a controller based on hybrid zero dynamics was insufficient to converge the motion of a planar five-link bipedal robot subjected to periodic forces or bounded noise disturbances to a stable state. In contrast, in the adaptive feedback compensation control method, the use of an adaptive parameter adjustment optimization algorithm to generate time-varying control parameters successfully achieved stable walking of the robot under these disturbances. This indicates the effectiveness of the adaptive parameter adjustment algorithm and the robustness of the adaptive feedback compensation control method.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics