指定三维粗糙度空间参数的喷丸强化零件三维粗糙表面形貌数值模拟新方法

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-10-01 DOI:10.1007/s11249-024-01921-w
Jiling Chen, Jinyuan Tang, Wen Shao, Xin Li, Jiuyue Zhao, Wei Zhou, Ding Zhang
{"title":"指定三维粗糙度空间参数的喷丸强化零件三维粗糙表面形貌数值模拟新方法","authors":"Jiling Chen,&nbsp;Jinyuan Tang,&nbsp;Wen Shao,&nbsp;Xin Li,&nbsp;Jiuyue Zhao,&nbsp;Wei Zhou,&nbsp;Ding Zhang","doi":"10.1007/s11249-024-01921-w","DOIUrl":null,"url":null,"abstract":"<div><p>According to random process theory, the existing autocorrelation function (ACF) expression that characterizes the spatial features of the shot peening (SP) surface topography makes it difficult to constrain the 3D roughness spatial parameters defined in ISO 25178, which restricts the correlation studies between surface topography and service performance. This paper introduces a new ACF expression for reconstructing the SP surface topography with specified spatial parameters. Based on the new expression, a numerical simulation method for stratified surface topography applicable to SP after finishing is introduced. The main idea is to perform feature extraction and feature modeling on the measured surface with the help of machine learning. The new method is applied to the numerical simulation of the SP and grinding-shot peening (Gr-SP) surface topography with a coverage of 200%. The relative error in height distribution and spatial parameters between the measured and simulated surface topography are less than 5%. The new method of height distribution and spatial parameters active design is provided to study the correlation between surface topography and service performance of shot peening parts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Numerical Simulation Method for 3D Rough Surface Topography of Shot Peening Parts with Specified 3D Roughness Spatial Parameters\",\"authors\":\"Jiling Chen,&nbsp;Jinyuan Tang,&nbsp;Wen Shao,&nbsp;Xin Li,&nbsp;Jiuyue Zhao,&nbsp;Wei Zhou,&nbsp;Ding Zhang\",\"doi\":\"10.1007/s11249-024-01921-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to random process theory, the existing autocorrelation function (ACF) expression that characterizes the spatial features of the shot peening (SP) surface topography makes it difficult to constrain the 3D roughness spatial parameters defined in ISO 25178, which restricts the correlation studies between surface topography and service performance. This paper introduces a new ACF expression for reconstructing the SP surface topography with specified spatial parameters. Based on the new expression, a numerical simulation method for stratified surface topography applicable to SP after finishing is introduced. The main idea is to perform feature extraction and feature modeling on the measured surface with the help of machine learning. The new method is applied to the numerical simulation of the SP and grinding-shot peening (Gr-SP) surface topography with a coverage of 200%. The relative error in height distribution and spatial parameters between the measured and simulated surface topography are less than 5%. The new method of height distribution and spatial parameters active design is provided to study the correlation between surface topography and service performance of shot peening parts.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01921-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01921-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

根据随机过程理论,现有的表征喷丸强化(SP)表面形貌空间特征的自相关函数(ACF)表达式难以约束 ISO 25178 中定义的三维粗糙度空间参数,从而限制了表面形貌与服务性能之间的相关性研究。本文介绍了一种新的 ACF 表达式,用于重建具有指定空间参数的喷丸表面形貌。在新表达式的基础上,介绍了一种适用于精加工后 SP 的分层表面形貌数值模拟方法。其主要思想是在机器学习的帮助下对测量表面进行特征提取和特征建模。新方法应用于覆盖率为 200% 的 SP 和磨削喷丸 (Gr-SP) 表面形貌的数值模拟。测量和模拟的表面形貌在高度分布和空间参数上的相对误差小于 5%。这种高度分布和空间参数主动设计的新方法可用于研究表面形貌与喷丸强化零件使用性能之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Numerical Simulation Method for 3D Rough Surface Topography of Shot Peening Parts with Specified 3D Roughness Spatial Parameters

According to random process theory, the existing autocorrelation function (ACF) expression that characterizes the spatial features of the shot peening (SP) surface topography makes it difficult to constrain the 3D roughness spatial parameters defined in ISO 25178, which restricts the correlation studies between surface topography and service performance. This paper introduces a new ACF expression for reconstructing the SP surface topography with specified spatial parameters. Based on the new expression, a numerical simulation method for stratified surface topography applicable to SP after finishing is introduced. The main idea is to perform feature extraction and feature modeling on the measured surface with the help of machine learning. The new method is applied to the numerical simulation of the SP and grinding-shot peening (Gr-SP) surface topography with a coverage of 200%. The relative error in height distribution and spatial parameters between the measured and simulated surface topography are less than 5%. The new method of height distribution and spatial parameters active design is provided to study the correlation between surface topography and service performance of shot peening parts.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Wear Mechanism and Wear Debris Characterization of ULWPE in Multidirectional Motion Cobalt- and Chromium-Oxide-Based Coatings: Thermally Spraying a Glaze Layer Visualization of Structural Deformation of Polymer Additives in Oil Under High Shear Flow Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1